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Abstract

This paper studies optimal taxation in a multisector economy characterized by in-
formation frictions and a production network through which firms trade intermedi-
ate goods. I show that the production efficiency result holds in an economy where
information frictions are symmetric across industries. In the context of production
networks, I find two key matrices that play a crucial role in determining the optimal
taxation: the input reliance matrix and the output allocation matrix. The optimal
taxation is solved in a closed form by using both matrices and the difference of in-
formation rigidities. The study shows that the government should impose higher
revenue taxes on an industry when (i) it has greater information rigidity, (ii) its up-
stream industries have smaller information rigidity, and (iii) its input goods are also
used by less informed industries in recession. To quantify the model, I use text anal-
ysis. Industries exhibit varying degrees of attention to economic outcomes, with
some being consistently more attentive than others. This attention is positively cor-
related with an industry’s exposure to business cycle shocks. The calibrated model
indicates that, in response to the COVID-19 shock, China should shift its tax burden
onto the utility, agriculture, and transport industries, leading to a welfare increase
of 0.7% for the U.S. and 1.23% for China.
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1 Introduction

Recently, a growing literature has emphasized the importance of production networks,
where shocks can propagate through the production chain and significantly affect the
entire economy. In a multisector economy with input-output linkages, the optimal taxa-
tion policy under complete information satisfies the production efficiency result, which
ensures that marginal rates of transformation are equalized across technologies in dif-
terent industries. The government achieves this by setting zero tax rates on interme-
diate goods and equalizing tax rates on consumption goods (Diamond and Mirrlees,
1971; Chari and Kehoe, 1999). However, this result relies critically on the assumption
that agents possess complete information about the future state or, if uncertainty ex-
ists, that agents have common knowledge of it!. In contrast, sticky information (Sims,
2003, 2010), rational inattention (Mankiw and Reis, 2002), and higher-order uncertainty
(Angeletos and La’O, 2020) prevent agents from fully learning the true state, leading to
dispersed and heterogeneous expectations about the future across households (Guer-
reiro, 2023) and across firms in different industries (Song and Stern, 2024; Flynn and
Sastry, 2024). Given this complexity, how should a Ramsey planner design optimal tax-
ation in a world with production networks and incomplete information? Would the
production efficiency result still hold? If not, what would the structure of the optimal
taxation look like, both in theory and in practice, to minimize welfare costs from shocks
like the Covid-19 pandemic?

In this paper, I address these questions within a multisector framework featuring
input-output linkages across industries and information frictions. The paper makes
several contributions. Theoretically, I provide a sufficient condition for the production
efficiency result to hold. I derive a closed-form solution for the optimal taxation and
identify two key matrices within production networks that determine the optimal tax
rates. Empirically, I find that attention is consistently asymmetric across industries,
regardless of business cycle fluctuation, and that this asymmetry is positively correlated
with industry’s exposure to business cycle shocks. Quantitatively, I apply the model to
compute optimal tax structures for both the U.S. and China, evaluating the welfare loss
if the government assumes symmetric information frictions. Additionally, I compare

China’s 2019 tax reforms, implemented during the pandemic, with the model’s optimal

1T follow the definition of complete (incomplete) information as outlined by Angeletos and Lian
(2016). By complete information, I mean that agents have common knowledge of the economy’s infor-
mation set, though there may still be uncertainty about both aggregate and industry-specific shocks.
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taxation and discuss implications for China’s industrial policy.

Theory I begin with a static model in which agents receive signals about the under-
lying state, with the distribution of these signals varying across industries. This setting
allows that agents in different industries may possess varying degrees of precision in
their information about shocks. The government selects a state-contingent tax schedule
to maximize social welfare, ensuring that tax revenues are sufficient to cover govern-
ment spending for each realization of the state. Two key findings emerge. First, the
production efficiency result holds if information friction is symmetric2. Second, I de-
fine two key matrices: the input reliance matrix and the output allocation matrix. By
applying a first-order perturbation to the economy, the optimal tax functions can be de-
rived in closed form using these matrices and the difference in information precision.
The Ramsey planner faces a trade-off between labor distortion in the first stage and
intermediate goods distortion in the second. I explore how the interaction between pro-
duction networks and information frictions shapes this trade-off and redefines optimal
taxation, using specific examples from production networks. Finally, I extend the model
to a dynamic setting, showing that the main result holds, except that the consumption
tax is no longer constant over time, even with symmetric information. In the dynamic
model, the information precision from the static model is replaced by a function of the

sequence of Kalman gains.

Evidence: To measure information frictions, I follow the approach of Song and Stern
(2024) and apply text analysis to construct an attention index. For the U.S., I use the
Securities and Exchange Commission (SEC) 10-Q filings of public firms, and for China,
I use the annual reports of listed firms. The results show that attention is consistently
asymmetric across industries for both countries and is positively correlated with expo-

sure to business cycle shocks.

Quantitative: To translate the attention index into the information precision, I follow
the approach of Bui et al. (2024) and incorporate the regression model developed by
Goldstein (2023). I refer to the Survey of Professional Forecasters (SPF) to calibrate for
information frictions. The calibrated model indicates the optimal revenue tax rates for
the U.S. are modest. The tax rates on wholesale and retail trade, manufacturing, and
services are close to zero, while the government should provide slight subsidies to the
FIRE and construction sectors while shifting the tax burden onto the agriculture and

2Symmetric information does not eliminate dispersed beliefs and actions among agents.
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mining industries. In contrast, the optimal revenue tax rates for China are higher, and
the Chinese government should shift its tax burden onto the utility, agriculture, and
transport sectors. The Chinese government has long implemented industrial policies
that subsidize selected industries. This paper finds that, considering the asymmetric
attention across industries within the manufacturing sector, industrial policy should
favor more modernized industries during the pandemic. Optimal taxation that accounts
for information frictions would lead to a welfare increase of 0.7% for the U.S. and 1.23%
for China, compared to a policy with uniform consumption taxes and zero revenue taxes
as implied by the symmetric information case. By some counterfactual exercises, I find
that the production networks can have a fundamental impact on the optimal tax rates.

Literature This paper belongs to a large literature analyzing the optimal taxation,
the so-called Ramsey problem, particularly for those that examine optimal taxation for
each industry by considering production networks (Diamond and Mirrlees, 1971; Atkin-
son and Stiglitz, 1976; Chari et al., 1994; Chari and Kehoe, 1999; Scheuer and Werning,
2016). These studies address both linear and nonlinear taxation in either representative
or heterogeneous agent models and consistently find that the Ramsey allocation satis-
ties production efficiency, which implies that setting tax on intermediate goods to be
zero is optimal. Diamond and Mirrlees (1971) supports the idea of uniform commodity
taxes when production efficiency is prioritized. Atkinson and Stiglitz (1976) discusses
the conditions under which uniform taxation of goods is optimal, particularly under
separable preferences between goods and leisure. The contribution of this paper to
this literature is to introduce information frictions into the model, which allows me to
explore how information frictions influence optimal taxation, particularly in the frame-
work with production networks. This extension is crucial as it provides a more realistic
framework for understanding fiscal policy in the world with incomplete information.
A series of recent papers do consider the interaction of information frictions and
production networks (Atolia and Chahrour, 2020; Chahrour et al., 2021; Bui et al., 2024;
Lian, 2021; Pellet and Tahbaz-Salehi, 2023). For instance, Chahrour et al. (2021) shows
that information shocks disseminated by the media can independently drive business
cycle fluctuations, using this mechanism to explain the 2009 Great Recession. Simi-
larly, Bui et al. (2024) examines the propagation of noisy shocks and productivity shocks
through production chains, finding that noise shocks exhibit greater persistence across
production networks compared to TFP shocks. Pellet and Tahbaz-Salehi (2023) investi-

gate how firms optimally select intermediate goods, revealing that firms tend to favor
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less volatile supply chains under conditions of incomplete information, even at the cost
of foregoing more efficient options. While these studies treat policy rates as exogenous,
this paper investigates optimal fiscal policy within a production network framework
that incorporates information frictions.

Finally, there is a strand of literature that directly addresses optimal policy design
under informational frictions. For instance, Angeletos and La’O (2020) examines opti-
mal monetary and fiscal policy in an environment where firms face both real and nomi-
nal rigidities, but they do not account for production networks. La’O and Tahbaz-Salehi
(2022) study optimal monetary policy within a production network framework, show-
ing that optimal policy is shaped by the interaction of an industry’s position within the
network and the degree of price stickiness. Wang et al. (2024) extend this framework to
an open economy, finding that monetary policy should place large weights on inflation
in sectors with small direct or indirect import shares through downstream sectors. Fang
et al. (2024) considers endogenous information rigidities, demonstrating that the opti-
mal price stabilization index and endogenous price rigidity are jointly determined and
interact with one another.

This study complements the series of works initiated by La’O and Tahbaz-Salehi
(2022). While their analysis focuses on monetary policy, this paper centers on fiscal
policy. Nevertheless, I find that, much like monetary policy, optimal fiscal policy is
significantly shaped by the interaction between production networks and informational

frictions.

Outline The rest of the paper is organized as follows: Section 2 introduces the bench-
mark model. Section 3 formulates the Ramsey problem by characterizing the equilib-
rium conditions. In Section 4, I discuss the main theorem for both symmetric and asym-
metric information cases, using examples to illustrate the role of production networks.
Section 5 calibrates the model and presents the quantitative results. Section 6 concludes.
Technical proofs are mostly delegated to the Appendix.

2 The Benchmark Model

In this section, I describe the benchmark model for a static economy. In the appendix,
I extend this framework into a dynamic setting. The model features a representative
household with N industries, each consisting of a continuum of firms with different

information about the underlying states. Based on their information, firms use interme-
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diate inputs and labor input to produce output, which is sold both as an intermediate
good to other industries and as inputs for the final consumption good. A benevolent
Ramsey planner sets the fiscal policies under full commitment to maximize the welfare.

Lump-sum taxes and transfers are ruled out.

2.1 Production

There is a set of N industries, denoted by i € {1,...,N}. Each industry contains a
continuum of islands indexed by k € [0,1]. On island j of industry i, there is a repre-
sentative firm that produces a variety y;; using inputs from other industries, as well as
labor. Firms in each industry employ Cobb-Douglas production technologies to trans-

form intermediate inputs and labor into final products:
TN i
vij = 2l T X5 @)

where [;; is the amount of labor hired by firms on island j of industry i, x;;x is the
quantity of good k used for production of good i on island j, a; represents the output
elasticity with respect to labor in industry i’s production technology, and a;; denotes the
output elasticity with respect to intermediate goods from industry j, and z; captures the
Hicks-neutral productivity shock. The assumption of constant returns to scale technol-
ogy implies that «; + Z}il a;j = 1 for all i.

The nominal profit net of taxes is given by

N
i = (1— 1" piyi — walic — Y pixie, @)
j=1

where w;; denotes the nominal wage rate in industry i and island j, p; denotes the
nominal price of goods produced by industry i, and 7/"® denotes the revenue tax im-
posed on industry i.

To aggregate the goods produced by different industries into a final consumption
good, there exists a final consumption goods sector. The consumption from different
industries is aggregated using Cobb-Douglas technology:

Ci\g
Y = Hﬁﬂﬁ—li)ﬁl

where B; denotes the consumption share of goods from industry i. The constant
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returns to scale technology implies that Y ; 8; = 1

2.2 Household

The household has CRRA preferences over consumption C and labor 1;;

e myy = C0=1 ¢ 1 e+,
(C, {mi}) = 1—0 _;Hl/je[o,ﬂnij J

and faces a budget constraint expressed in nominal terms as

N
PC=Y [ fwgny+ mldi
L e ™ sl

where 1;; is labor supply in industry i and island j, P is price of final consumption
goods, and 7;; is firm’s profit in industry i and island j. The household has income
sources from both wage payment and profit income. All his income is used to pay for

the consumption.

2.3 Government

The government’s budget constraint, in nominal terms, is given by

N N
PG = 2/ oM pyidi+ Y e pic 3)
i=1/j€lo1] i=1

where G denotes the real government spending and 7 is the tax rate on consump-
tion goods from industry i. The government can finance its spending through both
consumption taxes and industry revenue taxes (both are proportional tax rates), but it

can not use lump-sum taxes or transfers.

2.4 Market clearing:

Market clearing in the goods market is given by

Y=C+G (4)



which is the resource constraint for the economy: the final output is either consumed by

households or utilized by the government. Market clearing for industry good i is given

by

N
aditei= [ yydi 5
k:zl/fe[o,u TG o V7 ©)

where f] Xkj,; dj represent the overall use of goods i as intermediate goods in

€[0,1]
industry j and c; represents the use goods i as input for final consumption goods. The
output of industry i must satisfy the combined demand for both consumption goods

and intermediate goods. Market clearing for labor requires
nij = lj (6)

The labor demand equals the labor supply on every island and industry.

2.5 The Informational Structure

Nature first draws a random variable s from the set S, which contains all possible states
for the economy. Its probability is denoted by ¥ (s). The variable s contains not only the
innovation of fundamentals (Beaudry and Portier, 2006; Jaimovich and Rebelo, 2009)
like the productivity of each industry z;(s) and the real government spending G(s) but
also the information frictions of the economy (Lorenzoni, 2009; Angeletos and La’O,
2013). The economy proceeds in two stages.

Stage 1:

In this stage, the representative household assigns one worker to each island of each
industry. Unlike the perfect information economy where everyone has common knowl-
edge about the underlying state s, I assume that workers and firms on island j of the
industry i receive a noisy and idiosyncratic signal wj about s at stage 1. I don’t specify
wijk as it may be arbitrary information. It may contain information not only about fun-
damentals but also about the beliefs of other firms. Given this information wj, agents
form their beliefs about both the underlying shocks and the actions of other agents. I
denote with ¢;(w;j|s) the probability of receiving signal w;; for agents in industry i con-
ditional on state s, with ¢;(s|w;;) the probability of s conditional on receiving signal w;;

and with ¢;(wj,s) the joint probability of s and w;j. The probability functions ¢; are
8



dependent on i, so I allow different industries to have different information precision
regarding the state s.
Firms aim to maximize the expected utility-adjusted after-tax profit. The firm’s prob-

lem Pgirm is formulated as:

1
max Ejj | U [(1— /") piysj — wyly Z Piiji]
if

a;,
S.t. y]_Zl ITk 1x1];<

where U, is the stochastic discount factor measured by the marginal utility and [E;;
represents the firm’s expectation, which is associated with the information w;; available
to it. For workers, they aim to maximize their expected utility by choosing labor supply
n;j based on the signal w;;. Thus, the problem of workers Pypoer is formulated as

_ Z £+1
€+1 m]”

sit. PC= / w;ing; + 71;;|di
i_zl f€[0,1][ i1 761

Cla

max[E; | ———
7’11]

Stage 2:

In the second stage, goods markets open, market prices {pi,...,pn} and tax rates
{«{rd, ..., 71} and {z{,..., 7} are realized. The true state s becomes common knowl-
edge across all agents. Firms on islands of different industries then decide on the quan-
tity of intermediate goods x;i ; from other industries based on their initial decision of
labor, the prices of intermediate inputs, and the revenue tax rate to maximize their prof-
its 7Tjx. Frims on the final consumption goods sector make decisions for the industry’s
goods {c;} to maximize their profit U, given the realized prices of and taxes on con-

sumption goods.

2.6 Equilibrium and Ramsey Problem

The aggregate quantities C(s), Y (s), G(s),vi(s), ¢i(s) are determined as functions of the
state s in accordance with the specified tax rates. The labor functions {n;;(w;;), lij(w;;) }
are measurable to the signal w;; since they are decided in stage 1, and intermediate

input x;j(wjj, s) are measurable to the tuple (wjj,s) as it depends on the labor input at
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first stage and prices at the second stage. In the aggregate level, let L;(s) denote the total
labor demand in industry i and X;i(s) denote the total demand of intermediate goods

from industry i in industry i
L) = [ lalwdk Xys) = [ xiglwn )ik 7
i(s) keo.1] ik(wik) 1]() keo.] zk,]( iksS) 7)
Then I define the equilibrium for the model:

Definition of Equilibrium

An equilibrium, based on the given tax rates, is a collection of allocations:

& ={Y(s),C(s),G(s),yi(s),ci(s), Xij(s), Li(s), yij(wij, 8), Xijx (wij, 8), nij(wij), Lij(wij) }

such that (i) n;;(w;;) solves the worker’s problem at stage 1; (ii) C(s) solve the house-
hold’s problem at stage 2; (iii) /;;(w;;), xij(wjj, s) solve the firm’s problem at both stages;
(iv) the resource constraint (4) is satisfied; (v) the government’s budget constraint is

satisfied; and (vi) all markets clear.

Now I define the Ramsey planner’s problem. The Ramsey planner chooses state-

contingent tax functions:

i (s) = {Tll"d(s),...,’[]{,”d(s)},

w(s) = {7 (s),-.., N (8)}

to maximize the expected utility of the representative household Es [U(C(s), {n;j(w;j) }].

By setting different state-contingent policy functions, the economy achieves different
distribution of equilibrium, and these different equilibrium distributions lead to vary-
ing levels of welfare. Consequently, the benevolent Ramsey planner utilizes tax instru-
ments (state-contingent proportional taxes) to select an equilibrium distribution from
the set of all feasible distributions that maximizes household welfare, while ensuring
that tax revenues are sufficient to cover government spending, P(s)G(s), for every state
s.
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3 Solving the Ramsey Problem

I use the primal approach to solve the Ramsey problem. To ensure that a Ramsey out-

come constitutes a competitive equilibrium, I must show first that all possible alloca-

tions in the choice set of the Ramsey planner constitute a competitive equilibrium. The

following proposition states the conditions:

Proposition 1 (Conditions to Support a Competitive Equilibrium). Given the agqregate
and industrial shocks {G(s),{zi(s)}}.,}, the allocation & and the price {P(s), pi(s), wi;(wjj) }
can be supported as a competitive equilibrium if and only if there exist functions T;(s) and P;(s)

measurable to the state s, and they satisfy the following conditions:

1. The aggregate resource constraint:

i=1 = C(s)

(zi(s)Lff(s)H,inleé';(s) — Yreq Xii(s) ) 8 _G(s)

2. the implementability constraint:

3. the first-order conditions for intermediate goods:

%ﬂ(s)Li(s) = Pj(s)Xij(s)

4. the first-order conditions for labor:

—_

/ [Es/\wikﬂ(sl)} * ¢i(wils)dwy = Li(s)

Proof. Please see the appendix A.

Ramsey problem:

(8)

©)

(10)

(11)

Based on proposition 1, the Ramsey planner is to maximize the utility function of the

representative household:
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1—-0

cis) 7 -1 1 XY et
/SGS[ ) P ;/[Es/wikﬁ(s ) ¢i(wik|s)dwi]¥ (s)ds (12)

subject to the constraints (8) - (11). Here the disutility function of labor is replaced
by using 7;(s) as in equilibrium

1
€

nix(wix) = [Esqwﬂ?(sl)}

So, the optimization only involves functions that are measurable with s. The first-order

conditions of the Ramsey problem are shown in the appendix A.

4 Optimal Taxation

Definition 1. The information is symmetric iff each industry i receive signals from the same
distribution w conditional on s: ¢;(w|s) = ¢(w|s), Vi.

Proposition 2 (Symmetric Information). Assume there are both government spending shocks
and industrial productivity shocks {G(s), {z;(s)}}¥, }. If the information is symmetric across
industries, the optimal taxation is to set

tim(s) =0, Vi,s

wC(s) = (), Vilj,s

Proof. Please see the appendix A. O

When the information is symmetric, the optimal taxation is to set the industrial rev-
enue tax to be zero and the consumption goods tax to be the same. This proposition
extends the production efficiency results of Diamond and Mirrlees (1971) and Chari and
Kehoe (1999) from a complete information environment into an information frictional
economy. I can treat complete information as a special case of symmetric information
friction. Apart from the assumption of symmetry, there are no other constraints on the
structure of the signals. The information friction can take any form, with signals poten-
tially conveying both fundamental information and beliefs about others. People can still
have heterogeneous beliefs about the economy at the first stage, both within and across
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industries. The proposition holds as long as the information friction remains symmetric,
which gives us the benchmark result.

What happens if the information is asymmetric? For example, firms in industry i
may have more precise knowledge about a productivity shock within their own indus-
try than those outside of it (Fang et al., 2024). When it comes to aggregate shocks, the
impact varies across industries, leading firms to allocate differing levels of attention to
the shock depending on their exposure to it.

In general, the answer to this question is not easy, as it relates to the higher-order
belief of agents. The way I make the problem tractable is to use the perturbation ap-
proach. The perturbation approach has been employed by Bhandari et al. (2017, 2021)
to solve the Ramsey problem for representative-agent (RA) and heterogeneous-agent
(HA) models with complete information . This paper extends the application of this
approach to the case of incomplete information. I restrict the information structure to
be Gaussian.

Assumption 1. The state s and the signal wj; are normally distributed as follows:
s~ N(0,02), wi=s+ups Uis~N(0,0?2)

For this information structure, the asymmetry in information frictions is captured by
the differing variances of the noise terms 02 across industries. To apply the perturbation
approach, consider a sequence of economies indexed by a perturbation parameter ¢ that

scales the size of the shocks and noises:
s(0) = ds; Uik,s (6) = Uik,s0 (13)

The economy with § = 1 corresponds to the economy to be approximated. When &
converges to 0, the sequence of economies converges to a deterministic economy with-
out shocks, which can be solved easily. Equilibrium objects are approximated through
a Taylor expansion with respect to J over the sequence of economies. In the expansion
of the tax function with respect to §, when ¢ is small, the first-order effect dominates.
The first-order expansion of the policy functions consists of two parts: the derivative
with respect to the shock ds and the derivative with respect to the scalar ¢ (the scale of

variance of shocks & noises). Due to certainty equivalence, the second component is

3As previously discussed, the complete information here does not necessarily rule out the uncer-
tainty of the fundamental, but it does rule out the uncertainty of the economy’s information set.
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zero?, so the tax functions are approximated as linear functions of the shock s:

otf ot : ot/ ot/

T (05;0) T+ S| s+ = 6 TM(Es6) = g 4| 05+ — 0
~~ S~

— 0 (CE) =0(PE) — 0 (CE)

where 7¢ and 7/" are consumption goods and revenue tax rates in the no-shock

economy. For the production efficiency result, we know /"

Ind — 0 and T° are equalized.

The expansion of government spending shock and industrial productivity shocks with

respect to ¢ is given by:

- 109G _ 1 9Z;
log G(6s) ~ log G + Egb:o‘ss; log Zi(ds) ~ log Z; + ZTigLS:O(SS
6 R
z

where dG and dZ represent the percentage changes of the government spending
shock and the industrial productivity shocks, respectively. I set up a list of useful no-
tations before I go to the main theorem. For the information friction, the vector A mea-

sures the precision of information across industries, where the i-th element A; is defined

-2
as =t This expression serves as the signal-to-noise ratio, reflecting the accuracy of
s is

the signal for each industry. The value of A; ranges from 0 to 1: 0 indicates no informa-

tion (‘71'25 — 00), while 1 indicates perfect information ((71.25 = 0). For the entire economy, I
define the average precision A as follows:

YN L agDeAy

A
YN Dy

which is a weighted average of precision across industries, where «y, is the labor share
lXiD,'

. . . . Lo 6D .

ratio of the tax revenue from industry i (by using consumption good tax) in the no-

and Dy is the Domar weight of industry k. The weight is associated with the
shock equilibrium. I measure the difference in information frictions as A = A — A,
which reflects the deviation of each industry’s precision from the average precision. In
the production network, « is defined as:

4For higher-order approximations, the derivative with respect to 6 is not zero
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a=| o (14)
0 O aN

where the diagonal elements a1 to ay denote the output elasticity of labor for each
industry. A is the matrix of a;;, called the input reliance matrix, where each row repre-

sents the share of intermediate goods used in producing the output of each industry. R
L=
U X
row shows the proportion of its output used as intermediate goods by other industries

is the matrix of R , referred to as the output allocation matrix, where each
relative to its total use of intermediate goods. These fractions are computed in the de-
terministic economy when = 0.

The vector B represents the shares of consumption goods from each industry. D is
the vector of Domar weights D; = F¥!, also evaluated in the steady state without shocks.

Theorem 2 (Asymmetric Information). (1) The optimal industry revenue tax T is given

by

e+ A

ti"(s) = —(xzDT0Z + xcdG)(I — R)(I — -

o 1(I—AR))"'A

(2) The optimal consumption goods tax t€ is given by:

e+ A

7¢(s) = % — (xzDT0Z + xc0G)R(I — o 1(I—AR))'A.
where x; = xi(o,¢,A,G,Y) and T€ := 7€(0,¢,05,A,G, Y, A) are constants and satisfy:
Xz > 0and xc < 0, and e is a vector of ones.

Proof. Please see the appendix A. O

I have a very simple formula for the tax function of industrial revenue and con-
sumption goods. The last term reflects the variation in information precision. Un-
der symmetric information, this vector becomes 0, which directly confirms Proposition
2 within this information structure, where all revenue taxes are zero, and consump-
tion taxes are uniform. The product of matrix (I — R)(I — #(x—l(l — AR))~! and

R(I — %u‘l(I — AR)) ! capture how the interaction of difference of precision and
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production networks affects the optimal taxation. This interaction is closely related
to the input reliance matrix A and output allocation matrix R I formerly define. The
roles of the matrices (I — R) for the revenue tax and R for the consumption goods
tax, along with (I - %a’l (I— AR)) _1, will be discussed separately using examples
later. (xzDT9Z + xcdG) is just a scalar which captures the response efficiency from the
shocks to the tax rates. Here x is the response efficiency for productivity shock D79Z
which is positive and x is the response efficiency for government spending shock G
which is negative. These response efficiency parameters are related to the no-shock ratio
of government spending, the average information precision, and the preference param-
eters. As 0Z is the vector of industrial productivity shock, the product DT9Z can be
directly treated as the aggregate TFP shock. By using the Hulten theorem (Hulten, 1978;
Baqaee and Farhi, 2019) , we know marginally how much industrial productivity affects
the aggregate TFP is associated with its Domar weight.

Unlike the symmetric information case, when information is asymmetric, it’s im-
mediate that the tax rate on intermediate goods are non-zero, and the tax rate for final
consumption goods are not equalized, and they are shaped by the interaction of pro-
duction networks and information frictions. To explain this mechanism in detail, I refer

to the examples below:

4.1 A Motivation Example:

I first study a two-sector vertical structure network (see graph a in Figure 1). I let indus-
try 1 be the downstream industry and industry 2 be the upstream. From the theorem,
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the optimal taxes are °

e[ 1 0\ /[A
" — (x,D"9z Jr;a;a(;)X (_1 1) ();) (15)
0 0 A
¢ = %% + (xzDT0Z + xGac)% (O 1) ()11) (16)
- 2

where A; = A; — A and A; = Ay — A and they take opposite signs. Focusing on
the scenario of a positive government spending shock dG > 0. Consider the first case
where the downstream industry has less information about the government spending
shock than the upstream. According to equations (15)(16), for the revenue tax, the plan-
ner should tax the downstream industry 1 and subsidize the upstream industry 2, and
for the consumption good tax, the planner should comparatively increase the tax rates
for the upstream industry as A; < 0 < A, and xg < 0. The rationale is that when
the upstream industry is less informed about government spending, it is also less in-
formed about the future tax rate. As a result, an increase in revenue tax rates for the
downstream leads to a relatively inelastic decrease in labor supply compared to the up-
stream industry. Therefore, the government primarily taxes the downstream industry
to raise additional revenue as it distorts labor less. This rationale aligns with the litera-
ture, which emphasizes that factors that are either inelastically demanded or supplied
should be taxed more heavily (Ramsey, 1927; Chari and Kehoe, 1999; Stiglitz and Ram-
sey, 2015). The inelasticity here doesn’t originate from the supply or demand curves
but instead results from information frictions in the market. However, increasing the
tax rate on the downstream industry alone is not optimal as it would reduce demand
for downstream goods at the second stage of production. Unlike the downstream firms,
the upstream firms know more precisely that the government spending would go up,
and in this sense, they know more precisely that the upstream would be taxed more
heavily for their revenue, which reduces the demand for their product. Thus, the wedge
created by the revenue tax is passed on to the upstream industry, and it would distort

SMathematically, when YN | X;; = 0 for some i, R = ZNX# is not good determined. This is the
case when one or some industry goods are used only as consﬁrlnption goods. In that case, the consump-
tion goods tax and revenue tax are isomorphic. Since one tax instrument is redundant for those indus-
tries, there can be infinite ways of taxation to achieve the optimal equilibrium for the Ramsey planner.
This pattern does not affect the validity of my theorem. T/"¥ + 7€ perfectly cancels the term associ-
ated with matrix R. So I can always set matrix R by letting R;; to be 0 if it is associated with Z,Igjzl X;;i=0.
The expression for my theorem still gives the optimal taxation even though the optimal taxation is not
unique.
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labor more heavily as they have more precise information. To offset this distortion, the
government simultaneously subsidizes the upstream industry. In summary, the down-
stream taxation is justified by the inelasticity caused by information frictions, while the
upstream subsidy arises from input-output linkages in the production network.

In the second stage, when all tax rates are realized, if the upstream product is also
used as input for consumption goods, positive revenue taxes for the downstream in-
dustry 1 would cause the allocation inefficiency as more upstream goods would be allo-
cated to the final consumption good sector instead of the upstream industry. Thus, the
Ramsey planner also increases the consumption tax for the upstream industry.

Conversely, when the upstream industry is less informed about government spend-
ing, T have A; > 0 > A,. For the positive government spending shock, the govern-
ment should tax the revenue of the upstream firms as their labor is more inelastic to the
change of the tax rate. At the same time, the government subsidizes the downstream

industry” and reduce the consumption tax for the downstream industry.

4.2 More General Cases:

Cases I: Tree Network:

Definition 2. The production network is said to be a Tree network if every industry has at most

one direct downstream industry.

®The alternative way to understand this is directly looking at the first order conditions for the two
sector vertical structure without using perturbation. Assuming that 81 = 1 (only the downstream goods
are used as consumption goods), I have

_ AInd (o g 1
L1(5) = By e [(Esqwlj[l alle), Ll )WW]

1+78(s)  Li(s)
(=)= ) )
Ty 05 “]

LZ(S) = szj\s [(Es’wzj[

The wedge on the downstream is only associated with the revenue tax rates on industry 1 while the
wedge on the upstream is associated with revenue tax rates on both industries. Moreover, the wedge
1-7{"(s) (1=7{"(s)) (1-13"(s))

is not - for upstream and . for downstream at state s. Instead, it is associated
1+75(s) (1+1(s))
. 17.rlnd / 17T1nd / 17T1nd / .
with Egoyjs {ES/WU[ H_;C(S))]] and Egoyls [ES’wz,-[( L (ii)T){g(s/))Z (¢ ))] which shows how the wedges are

affected by the information frictions for each industry.

’The government can also keep the revenue tax rate for the downstream industry to be the same
as the upstream revenue tax does not distort the downstream labor supply. As discussed formerly, the
revenue tax and consumption good tax for the downstream here is isomorphic, and there is an infinite
way of taxation for the downstream to achieve the optimal equilibrium for the Ramsey planner.
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The tree network applies for all examples in figure 1 including two sector vertical

structure model as I discussed, and even an around-about production as graph c:

Figure 1: Tree Networks: examples

If the production network is a Tree network, I can simplify the bracket of the matrix
in the theorem:

e+ A

(I-—

« 1(I- AR))"! = —%1 (17)
Therefore, the optimal tax rates become

7ind %(XZDTE)Z + X6dG)(I— R)A (18)

7€ = #Ce %(XZDTBZ + xcG)RA (19)

Based on equations (18) and (19), the optimal taxation follows this pattern: given
a positive government spending shock (or negative productivity shock), if industry i
reduces its information precision, the government should increase the revenue tax on
industry i. It should reduce the revenue tax on industry j if and only if j is the direct
upstream of industry i. For the consumption goods tax, the government should increase
the tax for these direct upstream industries of industry .

The reasoning is similar to the two-sector model: when one industry becomes less

informed, the revenue tax increases for that industry; at the same time, the revenue taxes
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are reduced for its upstream industries to eliminate further labor distortions in those
industries, as well as in the industries upstream of these upstream industries, and this
process continues along the production chain, affecting all connected industries. The
consumption taxes of the direct upstream industries increase to remove the distortion
of intermediate goods in the second stage. This pattern generalizes the findings from
the two-sector vertical structure model into a more general production network, and it
has been captured by the matrix (I — R) for the expression of the revenue tax and R for
the expression of consumption good tax.

Cases II: Multiple Downstreams

Figure 2: Multiple Downstream

To explain the role of the matrix (I — @a_l (I — AR))~!in the theorem, I consider
a simple production network with single upstream and multiple downstream indus-
tries shown in Figure 2. The input reliance matrix and output allocation matrix for this
production network are given by:

0 --- 0

TN 0 0 0

O O arN . ) . .
A=1|: .+ =+ |, rR=|° T - (20)

. . 0 - 0 0

: aAN—-1,N
’ b by O
0 .0 0 1 N-1
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where

BN
- N-1
Zkzl Brakn

i

I have the following proposition:

Proposition 3. For a positive government spending shock or a negative productivity shock s,
if industry i € {1,---,N — 1} reduces its precision A\; < 0 about s, then the change of the
optimal taxation follows

(1) At/ > At > 0,vj € {1,--+ N —1};

2) |AT) Z (A iffajn Z agw, Vi k # 6;

(2) Atid = — YN P AT,

Unlike the previous case, the revenue tax increases for all downstream industries
from 1 to N — 1. If industry j relies more heavily on upstream industry N than industry
k, the tax increase for industry j should be greater than that for industry k. The upstream
industry N should be subsidized more (taxed less), with its tax reduction being the
weighted average of the tax increases for all its downstream industries. The weight
of industry i is proportional to its consumption share §; and its input reliance a;5 on
upstream industry N.

The reason is as follows: if industry i reduces its precision of information, it should
be taxed more, and its upstream industry N should be subsidized more. However, sim-
ply replicating this tax strategy will no longer be optimal. Raising the tax on industry
i alone distorts the allocation of intermediate goods for upstream industry N, which
has multiple downstream paths to consumption goods. In simpler cases, when the
upstream industry has at most one downstream industry, adjusting the consumption
goods tax would be sufficient to remove distortions of products used for intermediate
goods and used for the consumption goods. However, with multiple downstream in-
dustries, this would not possible. Therefore, the Ramsey planner must raise the revenue
tax for all downstream industries.

Yet, when the revenue tax for industry j (j # 7) increases, labor in industry j is further
distorted because the information precision for that industry remains unchanged. This
creates a trade-off between labor distortions in the first stage and intermediate goods
allocation distortions in the second stage. Consequently, the tax increase for the other
downstream industries should be smaller than for industry i as their precision doesn’t

change but is still greater than zero to reduce the distortion of allocation.
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The degree to which an industry’s revenue tax rate increases depends on its reliance
on upstream inputs. If industry j relies more heavily on the upstream compared with
another industry k, we want to tax it more because it is associated with a larger share
of intermediate goods and a smaller share of labor input. Thus, increasing its tax rate
greatly reduces the distortion of intermediate goods for its upstream industry N without
intriguing a large distortion of labor supply in industry j. This rationale gives us the
second result.

For the last property, the increase in the subsidy for the upstream industry serves to
counteract the labor distortion caused by the tax increase on its downstream industries.
The weight b; represents the fraction of labor in the industry N used to produce inter-
mediate goods i, relative to the total labor used for all intermediate goods production.
So, this weighted average gives the optimal subsidy needed to fully correct the labor
distortion in the upstream industry (given that there are multiple paths it goes to the
final consumption good).

To understand how it relates to (I — #a‘l(l — AR))~!, we can think about the
“expansion” of the matrix as I + M + M? + ... where M = #ofl(l — AR). The tax
changes for other industries are primarily influenced by a ! AR. Since « is diagonal, the
critical component is AR. When multiplied by the difference in information precision,
ARA, the term RA indicates that taxes are adjusted for downstream industries if their
upstream industry’s information precision differs from the average. Then ARA sug-
gests taxing the upstream industries of these downstream sectors to correct intermediate
goods distortions. Thus, I + M captures the process as the previous discussion: the gov-
ernment first taxes the industry that has less information, subsidizes the downstream,
then realizes it is not optimal and adjusts the tax for the upstream of these downstream.
The process does not end here, as once the taxes of those upstream go up, the govern-
ment needs to adjust the subsidy for the new downstream industries of them and then

revise the tax rate for the new upstream of these new downstream again. This iterative

process continues as the expansion of the inverse matrix (I — %a‘l(l — AR)> S

summary, the role of the second matrix <I — %a’l(I — AR)) is to address inter-
mediate goods distortions in the second stage, while the first matrix (I — R) or R is to
address labor distortions in the first stage.

Cases III: Most Upstream Industry

Proposition 4. If industry i only uses labor as input, and its precision increases by AA; > 0,
22



the optimal tax should change correspondingly as

AT =0,Yj #i; AT = ATE >0,V ] (21)

Figure 3

Proof. Without loss of generality, let’s assume that industry N only uses labor as input.
The input-output matrices are

a1 ai2 T ai,N

rag rz - rnN-1 O
az1 azp -+ O2N ’ ’ » 0

2,1 22 0 I2N-1

A= : : : ; R= i ) .

0
aAN-11 A4N-12 -°° A4N-1,N - - , 0

N1 'N2 °°° FIN,N-1

0 0 . 0
Then I can rewrite (I — “2a~1(I — AR)) in block matrix as

;& /_\“—1(1 _AR) = Mn-1)x(n-1) On-1)x1
€ 01 (N-1) Mix1

The inverse of the matrix becomes
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-1

3 -1
(I — et Aofl(l —AR)) ! = (M(N—Dx(N—l) O(N—1>X1>
€ 015 (N-1) My q

By substituting it into our theorem, I have

e+ A

I-R)(I- Lo l-ar) | ¢ | =

AN my L AAN

which establishes this result.
L]

When the industry is the most upstream and its precision changes, only the revenue
tax for that industry is affected. This is because the tax on the most upstream industry
does not pass through to distort the downstream industries. Additionally, the consump-
tion tax changes uniformly across all industries.

4.3 Discussion and Extension

According to the analysis for the static model, the optimal taxation for the economy can
be summarized by the following three principles: the industry should be taxed for its
revenue if (i) it has greater information rigidity, (ii) its upstream industries have smaller
information rigidity, and (iii) its input goods are also used by less informed industries in
recession (or when government expenditure goes up). The consumption tax changes the
opposite way of the revenue tax to remove the distortion between consumption goods
and intermediate goods.

I also extend the framework into a dynamic setting with an infinite horizon where
the government uses government bonds and state-contingent assets to smooth the tax
revenue, shocks are persistent, and agents receive a history of signals to predict the
underlying state. The main lesson holds. For proposition 1, when the information is

symmetric, consumption tax rates are the same across industries, and the revenue tax
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rates are all zeros. The difference is that the consumption tax rates are not constant
across time. The reason is that it is optimal to tax the agents when they collectively
have less information as it causes less distortion of their labor input than when they
understand the shocks. The theorem 1 also holds for the asymmetric information, except
that the precision parameter A; is not the simple signal-to-noise ratio. Instead, it is the
function of the sequence of Kalman gains. See the appendix for the details.
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5 Quantitative

To quantitatively apply the theorem, I have to calibrate the information rigidity for dif-
ferent industries. This is completed by using two steps. In the first step, I use the
text analysis to construct the attention index for different industries following Song and
Stern (2024). In step 2, I construct the mapping from the attention index to information

frictions.

5.1 Text-Based Measure

To analyze how different industries pay attention to various economic topics, I use a
dictionary-based approach that counts the frequency of keywords associated with each
topic. These keywords, which are detailed in the appendix, are primarily selected based
on their frequency in Econoday. Econoday is a well-known service that provides noti-
fications on major economic events and is also the source for the Bloomberg Economic
Calendar. According to the model’s first-order perturbation, aggregate output is a linear
function of productivity. Thus, to capture the attention directed towards TFP shocks, I
compute an industry’s attention to output. The output-related topic is defined using six
keywords: GDP, economic growth, macroeconomic conditions, construction spending,

national activity, and recession.

Data for US: I use electronically available 10-Q filings from publicly listed U.S. compa-
nies, as required by the Securities and Exchange Commission (SEC), covering the period
from 1994 to 2023. These quarterly filings, mandated under Regulation S-K, include au-
dited financial statements and descriptions of business conditions. As illustrated in
Figure A1, the content of Apple’s 10-Q filings provides an example of such disclosures.
For each firm j in industry i at time period ¢, the firm is marked as attentive to a specific
topic s if any keywords associated with that topic are mentioned in its 10-Q filing. In
such cases, the dummy variable dijst is assigned a value of 1; otherwise, it is set to 0.

This can be represented as follows:

dijs+ = 1(Total topic-s words > 0) (22)

The attention index for industry i at time ¢ for topic s is then calculated as the average
of d;js; values for all firms in that industry:
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N
Zj:ltl dijst

Attention;g; = N
i

(23)

where N;; denotes the total number of firms in industry i at time t. Consequently,
the attention index for industry i represents the proportion of firms that are attentive to
topic s during period t.

Data for China: In contrast, for Chinese industries, an equivalent database of quarterly
tilings does not exist. Therefore, I rely on the annual reports of firms listed on the Shang-
hai Stock Exchange (SSE) and Shenzhen Stock Exchange (SZSE) between 2001 and 2022.
The attention index for these firms is constructed using the same approach as that for
the U.S., based on the frequency of keywords appearing in these reports.

Figure 1 shows the attention index for various topics, revealing heterogeneity across
industries. Attention to output differs across industries in both China and the U.S. Both
countries show little attention to government spending, while firms in China pay sig-
nificantly more attention to fiscal policy compared to those in the U.S. Fiscal policy
is associated with government grants and subsidies, which is consistent with the fact
that Chinese firms often rely on government support for development. Additionally,
Chinese firms show greater attention to input-output linkages, though this attention
remains heterogeneous across industries °.

To examine whether asymmetric attention holds over time, I calculate the average
attention index over 5-year epochs, except for the shorter periods of 2020-2023 for the
U.S. and 2021-2022 for China. Figure 2 displays the attention to output across different
epochs for both countries. The top graph shows the U.S. data, while the bottom graph
shows the data for China.

The results indicate that certain industries consistently exhibit higher attention to
output. This pattern reveals a persistent asymmetry in attention. In the U.S., sectors
such as FIRE, construction, manufacturing, and services exhibit greater attention on
output, while industries like agriculture, mining, and wholesale trade exhibit lower
levels of attention. Similarly, in China, finance and construction industries are generally

more attentive to output than industries such as mining and agriculture.

8 Attention to production refers to whether a firm is concerned with its intermediate inputs from
upstream or demand from downstream, without specifying the industries involved. Fang et al. (2024)
analyze firms’ attention allocation across all industries within the production networks.
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Figure 1: The heatmap of attention

Notes: The attention index is constructed based on the 10-Q filings of all publicly listed companies in the
U.S. from 1994Q1 to 2023Q4, and the annual reports of all listed firms on the Shanghai Stock Exchange
(SSE) and Shenzhen Stock Exchange (SZSE) in China from 2001 to 2022. U.S. industries are classified
using the two-digit NAICS system, and Chinese industries follow the standards defined by the National

Bureau of Statistics of China.
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Figure 2: Industry Attention Over Time
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=1 Manufacturing
BN Services
3 Transportation and Public Utilities
= Retail Trade
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[ Real Estate
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BB Culture, Sports & Recreation
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: The attention index is constructed by averaging quarterly attention values over specified ranges

To check whether the constructed attention index is a good proxy for information

frictions, I conduct regressions on both forecast error and forecast dispersion. I use

data from the Survey of Professional Forecasters (SPF). In particular, I use the dataset

of individual forecasters, focusing exclusively on those from the finance sector °. The

forecast error is defined as the difference between the forecasted and actual real GDP

values: forecast error;; = E;;[rGDP;| — rGDP;. I use the standard deviation of the

°In the SPF, the variable industry takes a value of 1, 2, or 3, indicating the forecaster is from the fi-
nance sector, non-financial sector, or unknown, respectively. I only use forecasters who are identified as
being in the finance industry.
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forecast errors for all forecasters in each period to capture the information dispersion.

|forecast error; ;| = o + 1 Attentions + X¢ + €
SD(|forecast error;|); = o + 1 Attention; + X; + ¢€;;

For the regression, I include the control variable NBER recession to account for po-

tential increases in forecast error and dispersion during recessions. NBER recession is

set to 1 during recession periods and 0 otherwise. °.
|Forecast Error| SD(|Forecast Error|)
(1) @ | @ (2)

Attention -0.0182*  -0.0209** | -0.0432*** -0.0457***

(0.00949) (0.00957) | (0.0165)  (0.0166)

NBER Recession 0.00625** 0.00632

(0.00311) (0.00580)

Constant 0.0184*** 0.0180*** | 0.0210***  0.0206***

(0.00191) (0.00191) | (0.00333) (0.00335)

Table 1: How attention affects the forecast error and dispersion

Table 1 shows that increased attention reduces both forecast error and dispersion.
This pattern aligns with the model and validates the attention index I constructed as
a proxy for information uncertainty within the industry. The negative coefficients for
the NBER shock, both for forecast error and dispersion, suggest that uncertainty does
increase in recession if attention remains unchanged. This outcome may result from
larger volatility in aggregate TFP or increased subjective uncertainty during economic
downturns (Chiang, 2023; Flynn and Sastry, 2024).

What drives asymmetric attention across industries? Table 3 shows that an indus-
try’s attention to output is positively associated with its exposure to business cycle
shocks. Industry exposure to these shocks is measured by the correlation between the

growth rate of industry output and the growth rate of GDP, using data from the Bureau

10 According to the SPF classification, financial service providers encompass institutions in sectors
such as insurance, investment and commercial banking, payment services, hedge funds, mutual funds,
associations within financial services, and asset management. To align with the attention index con-
structed based on the two-digit NAICS system, I set the attention index to reflect the Finance, Insurance,
and Real Estate (FIRE) industry.
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Figure 3: Exposure and attention

Note: The exposures to business shocks are computed using the correlation of the detrended growth
rate of industry output and GDP growth. The left figure uses the HP filter, and the right applies a 3-year
moving average. The attention is computed by taking the average of the attention index from 1997 to
2023. The industry is specified by the 3-digit NAICS system.

5.2 Regression: from attention to precision

In this section, I map the attention index into information precision. To eliminate the
scale effect, I use the growth rate of real GDP instead of the level of real GDP. The
forecasted growth rate of real GDP for period t + h by individual i in industry j at period

t is defined as:

E. ] = LGP el
ij b1 8t+h] = Ei,j,t[f’GDPtJrh*l]

(24)

where forecast data is obtained from the SPE. To restrict the forecasters to be in a
single industry, I only include those who are in the financial sector. When the informa-
tion structure is Gaussian, forecaster i in industry j updates their forecast based on the

1Growth rates are detrended using either an HP filter or a 3-year moving average.
12In the appendix, I use an alternative measure of exposure to shocks by examining the correlation
between an industry’s TFP and labor productivity with the aggregate TFP and labor productivity.
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history of signals. This update in the static model follows the Kalman filter:

rivate rivate ,private
Eijelgt] = (1= A5 ) Eijealge] + A5 477 (25)
]/ ]/ /]/
where /\fiwate is the Kalman gain of the private signal and Jéf?tvate is the innovation term

based on the signal received at period f. The Kalman gain /\fiivate

is specific to both
the industry j and the time period t. Here, I restrict attention to the private signal and
set the forecast horizon to the current period. For a more general information structure

that incorporates public signals, see the appendix, where the model is extended to a
dynamic setting. For any forecaster i, the innovation term ﬁf;ltv A

his previous forecast E;;; 1[g:]: he extracts only the component of the new signal that

¢ is uncorrelated with

is orthogonal to all previously received ones.

I impose the key assumption: the Kalman gain of the private signal Aﬁivate has an
affine relationship to the attention of industry j at period t:
/\?Iwate = o + B1 * Attention;, (26)

The assumption of this affine relationship is employed by Bui et al. (2024) to de-
termine the precision of public signals from the intensity of news coverage. I use this
assumption to map attention into precision. Then the remaining step is to get parame-
ters Bp and B;.

Equation (25) implies

= ivatey = ivate _privat

Ejelgd] = (1= A7) Ealge] + A7 2 27)
where the average forecast of the industry is updated in the same way. Combining with
(25) and (27), I have

= . private -
Eijlgel = Ejrlg] = (1 =A,)( Eijealge] — Ejpalgi] ) +errorjp (28)
Forecast Difference at Period t Forecast Difference at Period f — 1
L . . . oprivate  _privat s
where the error; ;; is given by the difference of innovation x}g;ltv e - xﬁwa ¢, and it is

uncorrelated with the past forecast E; ;;_1[g¢] and E;;_1[g:].
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Substituting (26) into (28), I have

Eijilgt] —Ejrlgt] = (1 —Bo)( Eijr-1lge] — Eji-1lgt] )
Forecast Diffe;ernce at Period ¢ Forecast Difference at Period t — 1
—f-ﬁl( Ej,t—l [gt] — Ei,j,t—l [gt] ) * Attentionj,t + errori,]',t (29)

J

Forecast Difference at Period t — 1

The regression equation (29) uses the forecast difference between individuals and
the mean as both the dependent and independent variables. This approach follows
Goldstein (2023), with the distinction that the Kalman gain is not constant but varies
over time for different levels of attention. This approach allows me to use the individual
data to get the estimation of By and f;.

Alternatively by substituting (26) into (25), I have

Eijilgt] — Eiji-1(ge] =
Forecast Revision at Period t

_;BOEi,j,t—l [gt] — ,BlEi,]',t—l [gt] * Attention]',t -+ eI‘I‘OI'l',]',t (30)

This gives me an alternative regression model to estimate the key parameters o and
B1. Once I have their values, I can back out the precision of any other industry j at
period t by using affine relationship (26).

Table 2 shows the regression results. The results indicate that greater attention is as-
sociated with higher precision. I refer to the first regression model of forecast difference
for the baseline calibration. The quantitative analysis focuses on the COVID-19 shock,
and I verify that the precision values for all industries lie within the range of 0 to 1 after
2019.
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(1)

Forecast Difference

()

Forecast Revision

B1
Bo

1—PBo

0.361%*
(0.142)

0.289**
(0.0763)

0.444%*
(0.204)
0.0751

(0.0535)

Standard errors in parentheses
**p<0.01, ™ p<0.05, * p<0.1

Table 2: The estimation of By and B

Note: The first column presents the results for regression (29), using the difference between the mean
forecast and individual forecasts as the dependent and independent variable. The second column shows
the results for regression (30), with forecast revisions as the dependent variable.

5.3 Calibration:

To calibrate input-output linkages in the model, I use the input-out data from the Asian
Development Bank (ABD) for China and the U.S. Bureau of Economic Analysis (BEA)
for the United States. The calibration for both countries is shown in the table below:

U.S. China
Param. Value Source Related to ‘ Value Source Related to
o1 2 — IES 2 - IES
€ 1.0 — Frisch 1.0 — Frisch
Bi BEA consumption share ADB consumption share
o; BEA labor share ADB labor share
ajj BEA input-output matrix ADB input-output matrix
Rjj BEA input-output matrix ADB input-output matrix
% 0.365 IMF Spending-to-GDP 0354 IMF Spending-to-GDP
Attention; — 10-Q attention index — annual report  attention index
Bo 0.361  regression info precision 0.667  regression info precision
B1 0.611  regression info precision 0.410  regression info precision

Table 3: Calibrated Parameters

For preference, I set o1 =2and e = 1.0. I treat the year 2019 before the COVID-
19 shock as the steady state for the model. Thus I refer to the input-out table data for

both countries at 2019. The steady-state government spending ratio % is set at 0.3679
for the U.S. and 0.3679 for China using data from the IMF’s Public Finances in Modern
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History Database at 2019. a;; is computed by the share of intermediate goods to produce
the output. Since the model uses only labor, «; is computed by 1 — ijil ajj to ensure
that the production function is a constant return to scale. R;; is computed by using
the nominal cost of each industry to buy intermediate goods i 1. B; is computed by
using both household consumption and government consumption. I first calculate its
consumption by households and the government and then compute the share of each
industry relative to the total consumption across all industries. The attention index
Attention; is from the text analysis. For China, it is constructed by an annual report of
all SSE and SZSE listed firms at 2020. For the United States, it is constructed by taking
an average of the quarterly attention index at year 2020 by using the 10-Q fillings. By
and f3; are from the regression'4.

The input reliance matrix A, the output allocation matrix R, and the diagonal ma-
trix of labor share « can be directly computed from the calibration. The information
provision can be computed by using equation (26). For the Covid-19 shock, I set a 5
% negative TFP shock for the quantitative exercises for both countries. This level is
modest. Bloom et al. (2023) find total factor productivity (TFP) fell by up to 6% dur-
ing 2020-21 for U.S. The NBS of China estimates that China’s GDP contracted by 6.8%
year-on-year in the first quarter of 2020 due to the impact of the pandemic. This exer-
cise applies when there is a uniform 5% decline in industrial productivity. It also holds
when the decline is not uniform across industries, as long as DTz = 5%, in accordance

with the theorem.

5.4 Quantitative results:

I compute the optimal tax rates in this section. To decompose the effect of produc-
tion networks, I consider two counterfactual exercises: (i) the self-contained production
where I assume each industry produces without using intermediate goods from other
industries («; is kept the same but it could use its own goods as input); (ii) the symmet-
ric input-output structure where each industry depend equally on the rest industries («;
is kept the same but a;; is set to be equalized across j).

Figure 4 - Figure 7 shows the optimal taxation of both industrial revenue tax and

consumption goods for both countries. Firstly, we know when information is sym-

13For the model, R;j is for the real good allocation. I assume that all industries pay the same price p;
to purchase industry good i, so I can directly use the nominal cost of each industry to buy intermediate
good i to compute R;;.

l4see the appendix for the calibration of B and B; for China
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metric, all the revenue tax lies on the x-axis (the production efficiency result). The red
bars show optimal tax rates by using the 2019 input-output table as calibration for the
network. The green and blue bars show the optimal tax rates for the counterfactual
analysis. The consumption goods tax changes dramatically when the production net-
work is self-contained. At the same time, the revenue tax is all zeros. *°. The reason is
as follows. When production networks are self-contained, there is no interconnection
between industries. Then, the optimal taxation seems to tax the industry with less in-
formation about the shock as its labor is more inelastic to the taxation. However, the
government should strictly prefer the consumption goods tax to the revenue tax be-
cause it does not distort the allocation of output for use as intermediate goods for its
own industry or input for consumption goods. However, revenue tax does distort this
allocation: if one firm supplies its goods to another firm in the same industry, if the
downstream firm is taxed on its revenue, it reduces its demand for the supplier’s goods
and leads to a less-than-optimal allocation of products to the downstream firm. In this
counterfactual scenario, production networks fundamentally alter the optimal taxation:
compared to the actual input-output relationships, if each industry were to rely solely
on its product as input, the government would shift from taxing industrial revenue to

taxing consumption goods instead .

15The self-contained network is exactly a special case for the "Tree’ networks I specify in the exam-
ples. The industry has, at most, one upstream industry, which turns out to be itself. I prove that the
optimal taxation for the tree network is to subsidize (tax) the industry, which has different precision,
and at the same time tax (subsidize) its direct downstream to the same level. Here, both the industry
and the downstream of the industry is the industry itself. The tax and subsidy cancel each other. So the
revenue remains the same. But for the consumption good tax in the Tree network, for the downstream
of that industry (this is again the industry itself), it changes to remove the distortion between its used as
intermediate good and as consumption input.

16To the extreme case, if all goods are used for consumption and there are no intermediate goods, the
self-contained scenario goes back the standard horizontal structure where consumption good tax and
industry revenue tax are isomorphic: one of them is redundant.
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Figure 4: Optimal Industrial Revenue Tax: U.S.
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Figure 5: Optimal Consumption Good Tax: U.S.

The optimal taxation for the U.S. (red bar) is non-zero for the Covid-19 shock, but
their values are modest. The tax rates of wholesale and retail trade, manufacturing and
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services are all close to zeros. The government should slightly subsidize FIRE and con-
struction while shifting its tax burden on the agriculture and mining industries. 17 For
the second counterfactual, when networks are symmetric across industries, the abso-
lute tax rates mostly go up, but it does not change the sign of tax rates. The reason is
that in accurate input-output linkage, the agriculture and mining industries rely greatly
on intermediate goods from the manufacturing industry. Those two industries pay less
attention to the output than construction, which also relies on the intermediate goods
from manufacturing to production. Thus, more significant tax differences between those
industries will cause an extraordinary misallocation of intermediate goods from man-
ufacturing in the accurate input-output linkage. In the end, the optimal taxation takes

smaller absolute values.

5% Negative TFP Shock: China
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Figure 6: Optimal Industrial Revenue Tax: China

171 don’t consider inequality here but it remains an interesting extension of this model.
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Figure 7: Optimal Consumption Good Tax: China

The optimal taxation for China is also non-zero for the Covid-19 shock, and the tax
burden should be set on Agriculture, Utilities, Transport and Postal, Public Adminis-
tration and Social Services, Health, and Social Work. Industries like Mining, Finance,
Wholesale and Retail, Construction, and Real Estate should be subsidized the most dur-
ing the pandemic. China has announced a reduced value-added tax for different indus-
tries by 2019. The tax reform reduces the tax rates for the current 16 % rate for indus-
tries including manufacturing to 13%, reduces the current 10% rate for industries such
as transportation, postal services, construction, real estate, and agricultural products to
9%, and keeps the 6% rate unchanged mainly covering sectors such as I.T. and software,
health care, finance, social services, and telecommunications services. ¥ The quanti-
tative results suggest that this tax reform implemented during the pandemic leads to
some welfare loss as the government should subsidize the industry like finance instead
of industries like agriculture and postal.

5.5 Industrial Policy in China:

To take a closer look at the case of China, we know the Chinese government has im-

plemented so-called industrial policies to provide financial support and subsidies to

8For small companies in China, their value added tax base is their total revenue.
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selected industries. These “implicit’ subsidies are not reflected in the uniform tax rates
applied across the manufacturing sector. To investigate this, I break down the manufac-
turing sector into smaller industries, construct its input-output table, and compute the
optimal taxation for those industries in the manufacturing sector, assuming the govern-

ment can set varying tax rates on these industries through its industrial policy.

5% Negative TFP Shock: Manufactoring in China
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Figure 8: Optimal Revenue Tax Within Manufacturing Industry in China

Figure 8 shows the result of optimal taxes within the manufacturing sector. The tax
burden primarily falls on simpler industries, such as Food and Beverage, Wood Prod-
ucts, and Nonmetallic Minerals within the manufacturing sector, while government
subsidies are directed towards more modernized industries like Transport Equipment
and Machinery. The production networks plays a crucial role in determining the sign of
the optimal taxation for some industries: in a counterfactual scenario with a symmetric
input-output structure, the sign of optimal taxation shifts for industries such as Metal,

Nonmetallic Minerals, Chemicals, and Rubber & Plastics.

5.6 Welfare Loss:

I compute the welfare gains for both countries. Compared to the scenario where the

government uses a zero revenue tax and equalized consumption tax, I calculate the
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percentage welfare gain when tax rates are determined by considering the varying pre-
cision of industries. For China, the welfare gain is 1.23%, and for the U.S,, it is 0.7%.
To check robustness, I test different values for By and 1, and the welfare gains remain

non-negligible.

Welfare Gain: China
B1 =0.445 B =0.667

Bo = 0.273 0.32% 0.71%
Bo = 0.410 0.62% 1.23%

Welfare Gain: US
B1 =0.221 B =0.331

Bo = 0.407 0.53% 0.56%
Bo = 0.611 0.64% 0.70%

Table 4: Welfare gain under optimal taxation

Note: The welfare gain is computed as the percentage change in utility between the scenario where op-
timal taxes are imposed and the scenario where zero revenue tax and constant consumption tax are ap-
plied.

6 Conclusion

This study has explored the optimal taxation within a framework that integrates both
production networks and informational frictions. By developing a model where indus-
tries are interconnected through input-output linkages and where firms possess differ-
ent levels of information precision about shocks, I find how these factors jointly influ-
ence optimal tax policy:

The theoretical analysis shows that the production efficiency result holds in a sym-
metric information environment. However, with asymmetric information, these results
must be adjusted. The Ramsey planner imposes non-zero tax rates on intermediate
goods and differentiated taxes on final goods, with the tax rates determined by the pre-
cision of information available to different industries and two key matrices: the input
reliance matrix and the output allocation matrix within the production network.

In the quantitative exercises, the calibrated model suggests that the optimal revenue

tax rates for the U.S. are modest, while the Chinese government should shift its tax bur-
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den onto the utility, agriculture, and technology sectors. Counterfactual analysis reveals
that production networks can significantly influence the determination of optimal tax

rates.
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Online Appendix of “Information, Production Networks
and Optimal Taxation”

Appendix A Theory

Proof of proposition 1:
1.The "Only If’ Part:

I solve the equilibrium conditions backwardly: at stage 2, the firm maximizes the after-
tax profit (2) with complete information. The first-order conditions of the intermediate

goods are thus given by

(1= 5/"(s)) pi(s)zi(s) (1 (i) TR x5 (i, 5)

Xij k (wij/ s)

ajj = pk(s) 31)
where the left-hand is the marginal profit of intermediate goods, and the right-hand

side is the marginal cost. The equation (31) holds for any island j, industry i and all

intermediate goods k. Substituting (31) into the production function (1), I have

&

N = ai —u
yij(wij,s) = [Z,’(S)qu_—la,ik <(1 - Tilnd(s))r)i(s)>l ] El](wl]) (32)

L Hllc\lzl P?k(s)
¥Y(s)
and
nd pi(s)
Xijk(wij, ) = ilij(l -7 (s))m‘ﬂy(szlﬁ(wﬁ) (33)
‘-I’f:(s)

By using (7),  have that X (s) = ¥/, (s)L;(s) and thus I can transform the first order
condition (31) by using the aggregate values:

(1 —7/"(5)) pi(s)zi(s) (Li(s)) “TLRL X7 (s)
Aik )

Xl']'(S = P]'(S) (34)
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The first order conditions of industry’s good j used in the final consumption goods
sector is given by

ﬁ]' C]'_(S) ‘ = P]'(S)(l + T]C(S)) (35)

where the left-hand side is a marginal benefit, and the right-hand side is the marginal
cost. The marginal cost of good j includes both its price and the associated consumption
taxes.

Atstage 1, for the firms’ problem Pk, combining with (32), the first order condition
of labor demand /;;(wj;) is given by:

wix(wij)

Ind
Es’\w,]c(sl)_a (1- (s"))pi(s ) )

P(s’)

¥Y(s') = Egj,C(s)

which can be transformed into the following expression by using (33):

a;(1—7/"(s")) pi(s")zi(s") (Iij(wij) ) 'THL 1xz]k(w1]’ s')
P(s")

_Uwij(wij)
P(s")

= ES’|a)i]'C(S/)

Similarly, I can rewrite the above equation by using the aggregate input:

ai(1 = /" (s"))pis')zi(s") (Li(s')) TN, X, (s')
P(s")
o wij(wif)

P(s")

=E s'|wjj C( /) (36)

as in the second stage, the marginal product of labor must be the same across all
firms within the same industry, given the Cobb-Douglass technology. For the worker’s
optimization problem Pyer at stage 1, the first order condition of labor supply 7;; on
island j of industry i is given by
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where the left-hand side is the marginal benefit of labor, and the right-hand side is
its marginal disutility. Combining the above two equations, I have

a,-]-

(1 — T (")) (") 2i(s") (L") TN, X (o)
P(s")

Eg1w,; C(s') ™7 = Ijj(wij) (37)

The equation (37) has a direct interpretation. The total revenue in industry j minus
its total cost of intermediate goods is a;p;(s)z;(s) (L;(s"))4TIY_ X3 (s')!?. The left-hand
side is the marginal revenue of employment in terms of social welfare, and the right-
hand side is its marginal cost in terms of labor disutility. In contrast to stage 2, where
the first-order conditions are determined by current state variables s (since it is common
knowledge), stage 1 incorporates expectations about future states s’. The future prices
pi(s) are endogenously determined by labor input {L;(s)} for all industries. The choice
of labor at stage 1, therefore, introduces a sophisticated layer of strategic interaction
among industries. I set P;(s) and 7;(s) as follows:

Pi(s) = C(s)~" ’1’3((5)) (38)
7i(5) = €0 B (1= o)z )Ly I X ) 9

where P;(s) denote the value of good j and 7;(s) denote the marginal benefit of labor,
both in terms of the utility. Using (37), the labor /;;(w;;) is given by

o=

lij(wij) = (Eg|w, Ti(s")) (40)

which gives (??) by aggregating all labor within one industry. For the representative

household, the budget constraint can be rewritten as

9In the complete information model, it is also the share of labor cost. When information is incom-
plete, firms will have positive or negative profits, and the expenditure of labor w;;/;; is not necessarily
the fixed share a; of its total revenue.
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N

P(s)C(s) = ;/ke[o,l] [wikni + 7] = Y (1= 7" (5))pi(s)zi(s)a; L () [T, X (s)

o

I
—

1

(41)

where the second equality holds by using the FO.C.s of firms at stage 2. Multiplying

both sides by Cl(,s()S;U and by using the new notation of P;(s) and 7;(s),  have

C(s)' ™" = }_ Tils)Li(s) (42)
, which is the implementability constraint for the Ramsey problem.

2.The 'If’ Part:

I construct the allocations, prices, and tax functions. The output y; and ¢; can be com-
puted using the production function, the labor input L;, and the intermediate input Xj;.
The labor supply /;; and demand #;; on each island is determined by equation (40). Nor-
malizing P to be 1. p; can be derived by using equation (38). Then /" can be derived
by using (39). The island output y;; and intermediate input x;; x can be derived by using
equations (32)(33). The consumption good tax T~ can be derived by using equation (35).
The household budget constraint is satisfied for the way of my construction when the
implementability condition holds. The government budget constraint is automatically
satisfied in equilibrium when the household budget constraint and resource constraints

are met. Finally, it’s straightforward to check that all the f.o.cs of equilibrium hold.
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The Ramsey problem:

I write out the Langrange for the Ramsey problem:

C 1_0— £+1
52/[ (51)_0_ €_|_1 Z/[E’|wk i ¢1(wzk‘ )dwzk

zi(s) L ()T X3 () — ey Xia(s)

+r(s)[A(S)ITL ( )Pi — G(s) — C(s)]

Bi
N
+ig(s)[C(s) 7 — ;ms)u(sﬂ

FYY (o) ELTE)Li(S) = P(3) Xy (9)]

i=1j=1
N 1

+ L) [Eoa, T gilewls)dor — Li(s))u(s)ds

EO.Cs are:
. Y (s) A Qij o\

Li(s) : VR(S)aLi(s) — i (s) — ug(s)Ti(s) +J§ yij(S)a—jﬂ(s) =0 (43)

Pi(s) : ZVZ] =0 (44)
N yp(s)a

Ti(s) : — = / @i(wik|5)[Es/|wik7?(5/)]%dwik — uc(s)Li(s) + Z{ VZJ;) ILi(s)
]: 1

+ - /lh (5) %/ s’|w,~k7;(5/)]%_1(Pi(s|wik)§0i(wik|§)dwik]d§:0 (45)
Xylo s ele)gy o mi(9B(E) =0, 46)
C(s) : (1 =)pc(s) +1)C(s) "7 = ur(s) (47)

where ¢;(wjjls) = [ %goi(s\wik)goi(wikﬁ)ﬁ is the probability of receiving signal wj
given that his belief of state is s.
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Proof of proposition 2:

I use the guess and verify strategy:

Step 1:

Guess p;i(s) = 0, Ti(s) = k;T(s), ur(s) = kiu"(s). The coefficient k; and functional
forms 7 (s) and u*(s) are undetermined at this moment, and they are going to be solved
later.

Given the guess, from (11)

o=

1 1
L; (S) = k; Ewik|s[Es’\wikT(S/)] = kigL(S; T) (48)
where L(s;T) = E,,. s|Eg/w. T (8 )]% 20. This equation finds L;(s) once I determine
Y(s)

T . As pjj(s) = 0, from (46) it implies aaX—@ = 0. Using these N x N equations and the
]

wik|s L8 |wik
givenset {L;(s)}I |, I can first solve for X;;(s) (which includes N x N unknowns). Once
these are determined, obtaining Y;(s), C;(s), and the aggregate output Y (s) becomes
straightforward by applying the relevant production functions. They satisfy

a,,:BiYi(S) BiYi(s)  Xij(s)
i) ! & = Y0 (49)

Aggregating both sides over i, I have

o BYi(s) BiYi(s) L Gils)
Z 1] Ci(S) / C](S) =1 Y](s)

i

Thus

201 can have a uniform functional form L(s; 7) for all industries as the information friction is sym-
metric.
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which in matrix form is

B1Yi(s)
Ci(s)
B=(I1-AT)| (50)
BNYN(s)
Cn(s)
It implies [ﬁ g%s ). B ’ézl(vs()s)]’ = (I — AT)~1B. Their values are constant regardless

of the state s. Let M = [(I — AT)~1B8]; = D;. Substituting it back into (49), I have
Ci(s) g

Xij(s)

Yj(s)

D:
= a,-]-D—; (51)

Multiplying both sides of (43) with L;(s) and substituting (47)(48), I have

“iﬁgés) (1 - 0)pa(s) + DY (S)C) ™ =k (u(s)L(s; T) + pa(s)T(s)L(s; T))

To ensure the above equation holds, I set k; = (Dilxi)ﬁ%l, as it follows from £ (':Yé;)

D;. Dividing both sides by D;a;, I get a single equation
(1 =) pug(s) +1)Y(5)C(s) ™7 = ut(s)L(s; T) + uc(s)T (s)L(s; T) (52)
In order to satisfy the equilibrium condition (34), P;(s) is defined as

) UTi(s)Li(s) _ DTG T)

Pi(s (53)
=56 V(s)
For the implementability constraint to hold,
1 .
C(s)" 7=k )T (s)L(s;T) =T (s)L(s;T) (54)
i=1
Combining with the resource constraint, I have
(Y(s) = G(s)'™" = T(s)L(s; T) (55)

From the previous discussion, I know Y(s) — G(s) is a function of 7(s). Thus, I
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determine 7 (s) as the function that solves the above equation.

From (45), given the guess, I need

o =

S(O)nc(s)L(sT) + ki L(s;T)

= ki% /VL(g)%[/([Es/wikT(S/)]1_14)1’(5|wik)(Pi(wik|§)da)ik]d§ (56)

k

1
Dividing both sides by k, I have a single equation. Combining with (52), I have

uL(s)L(s; T) = Y(s)C(s) ™"
1-0)Y(s)C(s) " =T (s)L(s;T)
(

(
= /VL(g)(P—[/([Es’wikT(S/)]l_lq)i(s|wik)Goi(wiklg)dwik]dg (57)

+1)L(s; T)

Once I find 7 (s) using (55), I can also compute C(s), Y(s), L(s; T) following the way
I discussed. Then I solve ul(s) by using (57) and I define ug(s) ensuring (52) holds and
ur(s) ensuring (47) holds.

Now I verify the guess is correct. Given the guess, conditions (8)(9)(11)(44)(46)(47)
hold automatically. Given the values of k;, (43) and (45) are reduced to conditions (52)
and (57) and those conditions are satisfied by the way I define " (s) and s (s). Besides,
(34) is satisfied by the way I construct P;(s).

Step 2:

Y:
The industry revenue tax satisfies: T;(s)L;(s) = P(S)] C(s)~7. Then

_ Tis)Li(s)

(1- T]'Ind(s)) = 4P(s)Y,(s) =

(58)

which implies that industry revenue tax is zero for all industries.
The taxation on the consumption goods satisfies: p;(s)C;(s)(1+ T]C(S)) = BiP(s)Y(s).
Transforming it, I have

=
=

IBJ'Y(S)C_U(S) 1 :B]'Y]'(S)Cl—(r(s) S): s)
BEGE)  BOGE G) 5~ 6

0O
0



which implies that the taxation on the consumption goods are equal across different
industries.
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Proof of Theorem 1:

I use the perturbation approach to solve equations (43)-(47):

Zeroth Order Perturbation:

For the budget constraint:

N
Y-G=C C'7=Y L, a—?LS“ =DPX;, Ti=L¢ (59)
i=1 1
For the FEO.Cs
N )% - _ -
Z;P‘ijxif =0, P‘RaXU =i, ((1—0)fic+1)C™7 = fig
1=
11— )2 B N o og; a:
AL = s L = i+ ) i = (2) #GJrZPlu )1
i =1 i j=

From proposition 2, I know that the costates fi;; = 0 as I can let ¢(w|s) to be Dirac
distribution §(w — s) when agents in all industries have perfect information. Then I

have
(-?TY__ e+1liic+1  e+ljc+1 oo (60)
ik ((1-0)fc+1)
where % gives the wedge of labor supply for the steady state economy. In

steady state, the industry revenue taxes are all zeros T].I nd = Q.

First Order Perturbation:

To get the first-order perturbations, I derive the following useful lemma:

Lemma 1. Let ¢;(s|5) = [ ¢i(s|wix) @i(wik|8)dw;y represent the probability that the state is

perceived to be s, given that the actual state is 5. Then I have:

s|5)p(8) ~
/ (Pl ( dS )\iS, /wl]gol(wl]]s)dwzj =S
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2
where A; = 02(;"502 denote the precision of industry i about the true state.

ie

Proof. Given Gaussian shocks and signals,

N 282 _ (wig=9)? L (s=Ajwp)?
¢Z(S|S)(P(S) _ 202 1 202 1 20 24022) 1
= e s —@ ie B — 1s e dwik
gO(S) V 27T05 27T 0T
Uis+0i2£’
2
0/ D ) <
1 1 _%(52(‘71'5 +0;, )+0' Zo'ig wir(5+8)+( 2+ 2"’1) 1k)
e 2 — e is ' ie dwik
V 270G Tis%%
T+
)2
-2 +
— (P (0 2 +0, ) 40,2 17(2575)2)
18 1)o7
_ 1, iz ™%
V27105, 2 (;izsal%z
Tis 0%
1( '2 2 2
— 3y +1) 0 A wi— (g +1) 71 (5+5))
2\ ,2 ., 2 )
X /e Tis T0% * l is % dwlk
(5—7;s)
2,2
= e st
2 2
271— 0'15(713
20’ +U

As 2696 45 the density of V(A (Ajs %l ), I prove the first part. For the second one, I
Tl y % 224527 P part. /

have

gilsls) = P [ (5) oy = PEIBILER) _ 51

by using the fact that ¢;(s|wi)p(wix) = @(s)@i(w;jls). Pi(w;jls) and @(wy) have dif-
ferent meanings, but they are intrinsically the same as we assume people have rational
expectations. Thus, I prove the second part.

O

Budget Constraint:
( ).

notes evaluating the partial derivatlve of X(s) with respect tosats = 0. For The tirst

To simplify the expression, I mean 25 | s=0 by using

Spec1f1cally,

order perturbation of the implementability constraint, I have
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dlog(C(s)) & T,Li  dlog(Li(s)) , 9log(Ti(s))
=) ds B 1221 A _zii( ds ds )
— (14 1) iDzai(alogé{;i(s)) aloggf(S))) 61)

where D; is the Domar Weight of industry i. I show the last equality step by step.
Using (59), L have T;L; = Ef“. Combining (60) and the following equation

We know that if“ ~ a;D;. Thus, I show the last equality holds. For the Domar

Dy
Weight, let D = ( : > by using f.o.cs of steady state, we know it satisfies:
Dn
D=l (1-aT)p ()
14 7€
For the resource constraint, I have
9log(C(s) _ ¥ & log(Ci(s)) | dlog(A(s)), _ Glog(G(s))
ds B C<g & ds * ds ) C ds (63)
For the equilibrium condition constraints, by using
1 1 ~11 d7;(s
EuylE. /|w,k7;<s’>1e ~ EEul ()| o)
_ 197 87' =11
e ( ) |S— TE wk|s[ ’|wkds ] ( ) ‘5—07;E
I have
dlog(7i(s)) _ ,-1,,,910g(Li(s))
0s = A () 0s (64)
dlog(7i(s)) | dlog(Li(s)) 9log(Pi(s)) _ dlog(X(s))
+ - = (65)
0s 0s ds 0s
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F.O.Cs:

For L;(s):
020 G, WO ooy 9T gt
Dividing both sides by 7; and using (59)(60) and (64), I have
W) e dpr(s) erlicHl o azog(g’{ig’)(sﬂﬁ 1) %)
ds s ((1—o)jcg+1) ds 0s
TALL GG +Ji 2245

For 7;(s), using (64) and lemma 1, [ have

(8) ¢) — (e) 3 2 M5C) _ (o) (o) -+ 1) 28D 1 2 )

=i

Substituting (66) into (67), I have

Ipcls) Ale+1] = [A e+ 1] i ai Opii(s) Ate((e+1)fig + 1)M

0s prll % 0s 0s
s)
LOHR(s) (e+Dfic+1 = log (57,5
0s ((1—U)ﬁc+1)c t—a (et DAc+1)
Substutmg aL = «; ﬁl C 1 , it can be simplified as

oG (s) -1 _ Our(s) (e+1)fic+1 c 1 N, aij Opij(s)

ds Ae+1] s ((1-o0)ic +1) = +1]].Z% w; 0s

- dlog(Y(s)) | dlog(Yi(s)) _dlog(Ci(s)) _ ;1. q;9l08(Li(s))

+((£+1)]’[G+1)( Js Js Js [/\z €+1] Js )

For the f.o.c of XZJ, I have
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Ipij(s) _ 9%, fir
aS aS p]
Since
9Y (s) Y(s) Yi(s) Y(s)

aX;(s) ~ PUiC(s) X(s)  PICi(s)

and the steady state value % is zero , I can further get
ij

ouij(s) ﬁLﬁR(alog(Yi(s)) _ dlog(Ci(s)) N dlog(Ci(s)) alog(Xij(s)))
ds C P ds ds s s

Combining with (60) (64) and (65), I finally have

i og(Y; og(C; dlog(C;
) _ (¢ 1y5-41) LB _ 2log(Cl)) , DG ()
ey 2eBLL0) |, Dos(F(9), .
Then
N a;i opi(s «; dlog(Y;(s — i(s a;; 0l 5
j;aj .uajs( ) _ (Sﬁc+1)(1 1 dl ggZ( ) 1 - alog§)§< ) ]; al] Oggs:]( )
(0] j N ialo
A Ne-1)+ 1)t 1%81 gé()?(S)) Jg ale] gg](S))) 70
And

35,2 _ (e g )30 &, IOBOUEN) g D108(G5) | s 108(C1(5)

i—1 ds et ds = 0s s
N o dlog(L;(s sea910g(Pi(s))
-y XA 1s+1]gés ) + X} digasf ) (71)

where X].use‘i =yN, X;; which represents the total use of industry goods j as intermedi-
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ate goods. The perturbation of the f.o.c of P; implies

N ..
Y. Xijayl](s) =0 (72)

~r OpR(s) Ipc(s) - dlogC(s)
c” =1-0)—/—= —0((1- 1)———= 73
B — (1- ) (1 - )i + 1) 25 73)
I use the matrix notations to solve the above equations:
dlog(Li(s)) dlog(Cy(s)) dlog(Yi(s)) T dlog(P;(s))
0s Js 0s 0s
oL = : , oC= : , 0Y= : JoP = :
dlog(Ln(s)) dlog(Cn(s)) dlog(Yn(s)) dlog(Pn(s))
0ds ds 0ds J ds
& 0 0 XUsed g 0 ] A0 0
a=|o0 . o, X=[X) X"™=] o . 0o |, A=]0 . 0
0 0 ay 0 0 X 0 0 Ay
Combining (71) and (72),  have
(xUsed _ xT)aC 4 XTaY — XT[A e + I]oL 4 XUsedgp = 0 (74)
Lemma 2.
0C=C((Y(I—a) = XT) (A te + 1) + aY)IL + (XU — YA)OP + YOZ] (75)
Y = [(A'e+ I)(I — &) + a]OL — AJP + 0Z (76)

Proof. For the Cobb-Douglas production function, Y; = z;(s)L:(s)ITY_; X7*(s). From
(64) and (65), we know that

Z Blog(as % alog Zazk 141 alog(gfi(s)) B Blog(afk(s)))
k=1 k=1
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which implies

YN, alﬂg( ()

dlo

Thus I show the expression for Y. As C;(s) = Y;(s) — 2,1;]21 Xii(s), T have

A1og(Ci(s)) _ Yi(s) dlog(¥i(s) 1 & dlog(Xuls))
0s — Gi(s) 0s T e A Xis) ask

Again by using (64) and (65),

alog Xk1 Z X(s)(Ae + 1)alog(£k(s)) B alog(Pi(s)))

ds 0s

N
Y Xiils)
k=1

which implies

YN Xpi(s) L8 Xu ()
- XT(/\_lg + I)aL _ xUsedyp
YN | Xpi(s) Losin(s)

Then it’s straightforward to have

oC = CHYaY — XT(A e + I)oL + xUsedgp]

Substituting the expression of dY, I prove the expression for oC.

(77)

]

Next, I prove the following key lemma 3, which helps us to largely simplify the

equations I need to solve:

Lemma 3. The solution dC and dY satisfy:

Y —dC =0
62
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Proof. By using lemma 2:

xUsedgy — XT[A " teI)oL + XUsedgp
= XUsed([(A~ e 4+ I)(I — &) + a]OL — AOP + 9Z) — XT[A e + IJOL + XUseI9P
= XUsed[(A~te + I)(I — &) + a]oL — XT[A e + I]OL
4+ XUsed(1 — A)9P 4 XUsedyz

And

dC —dY = CH((Y(I —a) — XT)(A e+ 1) + aY)oL + (XUse? — YA)dP + YOZ]
—[(A e+ I)(I — &) + a]0L — AJP + OZ
=C (Y -C)((A e+ I)(I —a) +a)oL — XT (A~ e+ I)oL
+(XUsed _ (Y — C)A)oP + (Y — C)oZ]

Market clearing conditions of each industry imply Y — C = XUYs¢4. Thus

0C — oY = CHXUsed[(A~e + I)(I — &) + oL — XT[A"le 4 I]OL
+Xused(1 _ A)aP+Xusedaz]

Comparing two expressions, C(9C — 9Y) = XUsedgY — XT[A~1e 4 I|oL + XUs¢49P. The

equation (74) can be rewritten as

(xUsed _ xT)(aC — 9Y) + XUy — XT[A1e + I]oL 4 XUsedgp = 0
= (Y - XT)(aC—-aY) =0

which proves the lemma.

By using lemma 2 and lemma 3, [ have
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N a1 9pg;(s)
Ejzla_l 0s

: = ((e+1)jac +1)a""[(I - a)(dY — (A~ 'e +I)3L)
ZN anj opn;(s)

i=1 ap ~ Os
+(A — (I — &))oC + A9P)]
= ((e+1)jig+1)a"—(I — a)(A e+ I)OL + AJP + AOC]
= ((e4+ 1) fig + 1)a~(—9Y + 9Z + adL + AJC)
= ((e+1)jig +1)[0L — a~Y(I — A)OY + a~10Z]

Substituting the above equation into (68), and using lemma 3:

A1) +Ae=((e+1)jic+1)A e+ ) [—a"1(I - A)Y +a10Z] (79)

where e is the vector of ones and A is a constant given by

dlog(Y(s))
ds

_ps(s)  apr(s) (et i +1

A= s ((1—o)fic + 1)

C’— ((e4+1)jig+1)

Combining with (73),  have

[\:(@+1mc+1xgade@D__ang@»)+(1_(s+1mG+1)aWﬁ9

ds ds fc+(1—0)"17 9s
For the shocks, I define
IA — dlog(A(s)) 3G = dlog(G(s)) 97 — dlog(Z(s))
- 0s ’ - s ’ o 0s
Using (61)(63), I have
A= ((e+Dic + 1)l 7 lLe 29)DTa(A e + I)IL — BTAC — 0A|
_ (e+Dpg+1  dug(s)
(1 fic+ (1— 0’)*1) ds (80)
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(1+7°)
(1-0)

DTa(A e+ 1)oL = é(ﬁTaC +0A) — gac (81)

To summarize, given shocks {0A, 0G,0Z}, I have equations (74)(75)(76)(79)(81) to solve
for {9L,9P,aC, aY, 26}y,

Taxation
. 1—7lndyy 4.
By construction, as P; = ?j((ss))C(s)"T and 7j(s)L;(s) = S i,a(]:;](s) ](S)C(s)"’, I have
7j(s)Lj(s)
1— 1M (s)) = L2 (82)
(=1 = b
In the steady state, T].I nd — 0, T have
aT{"d(S)
Js
ot = : —=9Y 4+ 0P — 0T —0L =0Y+ 0P — (A e+ 1)oL (83)

el )
ds

As p;(s)Ci(s)(1+ T]C(S)) = BjP(s)Y(s), L have

otc-=| : | =(1+79)([pToC + oA — (1+7°)DTa(A e+ 1)dL]e — 0P — 9C)

(0
1-0)

(84)

When A! = A, Vi, it's easy to check that 0L = le, P = Alele — (I — A)~19Z,0C =
oY =le+(I—A)"1aZ. l'is a constant determined by the steady state values and shocks.
By using the fact that [31% = (1+ t°)D;, 1 can compute I:

(1+2°)DTIZ +0A) — 239G

(1}—0)()1—15 +1)- X%

Ol=

| —

(85)

Ind

Immediately, I have 0t"* = 0 for this symmetric information case. This result is
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. . N DA
what I have shown in the proposition 2. For different A’, let A = %. The equa-

tions are non-linear in A;, so I do the linear approximation of these equations for A;
around A.

Let A; = )\i_l — A~ Asymmetric information leads to changes in the solutions,
which I define as the following new set of solutions:

oL =1le+0dL, P =A"lele—(I—A)"19Z+0P, oY =le+ (I—A)19Z+0Y

The linear approximation of (76) for A; is

Y =el(I—a) | ¢ | +[(eA 14+ 1)(I —a)+a]df — AIP (86)
The equation (74) is equivalent to

XUSEd[(A_ls + I)(I . “> + “]aL . XT[A_IE + I]aL
+xUsed(1 — A)9P 4 XUseda7 —

Then I have

xXUsedel(I —a) | ¢ | = XTel | ¢ | + XA e+ 1)(I — &) + &]0L
AN AN
~XT(A e+ 1)aL + XUsed(1 — A)aP =0

Let’s define R = (XY*¢4)~1XT and £ = (I — A)"'.The (i, ]) element of R is %,
and it is the proportion of industry i’s output used as intermediate goods by indus-
try j, relative to the total output of industry i consumed as intermediate goods across
all industries. So R is the matrix for input-output linkage, and L is Leontief inverse.

Transforming the above matrix, I have
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~((A e+ 1)(I —a) +a)oL + R(A e +1)0L (87)

For (79), I have

= —((e+Dac+ el | + | = ((e+Dc+ (A e+ Da" (I-A)dY  (88)
AN
Substituting (86) and (87) into (88) and noticing that (I — A)AL = A(I — A)L = A,
I have

M

A-1g28e) 4 & (2|1 4 ((e4+ Vi + 1))

(e Dic+D(ATe+ 1" ((e+ Vjic + )(ATe+1)

AN

=a Yel(I-a—AR) | : | +((A'e+1)(I —a — AR) + &)9L] (89)

Combining with (86) and (87),
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ot = —(I-R)el | : | + (A le+1)aL] (90)

LetdoL =el | : | + (A 'e4+1)0L. Then from (89) I have
AN

A
R (M523 + (e + Vg + 1)) | 7]

((e+1)yc+1)(A e ) T T (e )i+ DA et 1) Ai
N

= (I—a"Y(I—AR))IL — 0L

which implies

By using (51— a Y (I—AR))e= e—e= E_—)Ee and (I — R)e = 0, it shows that

A 1 aVG()_’_A
I-R I—a Y (I-AR))! =0
( )(8+/\ ™ ( ) ((e+ D +1)(A~ 1£—|—1)
Thus I find
A
oug(s) . 1
N —%kcls) A
ol — (1 Ryl =9 A _p pyr- Tt -11_aR) 1| ¢
T ( ) (8+1)ﬁc+1( ) ( ) k
N

Combining (80) and (81),  have
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i L (A 1) — (1+7°)DTaZ — A

3 _ (e+1)jig+1
Alet+1) — ptiorT

Substituting the expression of / and transforming the equation, I have

M R er1-Ta-o) 0
&A1)
xa= (A le+1—-X(1—0))2
EAte+1-(1-0))
XG =

And it’s easy to check that for xz, x4 and x, their absolute values increase when

or A increase if o € [0,1]. At the same time, I can get

N )_L_lsaﬂgs(s) + A
_|_

o]

©1)

- e—
((e+1)ac+1)
i h
(x2D79Z + x40A + xcdG)(I — & +€ Y1 AR) | :
AN
D S U :
For future use, I let k = —m to simplify the equations. To solve for k, (81)
implies
D ol = (1 - 0)pToY
From (84), I have
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(1+7°)DTadl]e — 0P — aY) (93)

9#€ — (14 25 (18Tay — 7
2 = (147 (p10Y —
To replace dY by oL, T use
1 M
oY =L(I-AR —a)ol + ——La(0L — | : 94
( WL+ gy LaeL | ) 99
AN
oY + oP = RoL (95)
Combining (92) (93) and (95),
0%¢ = Z(( ? _#°)DTadle — ROL) (96)
C (1—0)
Substituting (91) into (96), I have
_ ] _ A
0%¢ = —gke — E(XZDTBZ + x49A + xcdG)DTa(I — & + Aa_l(I —AR)) ' | : |e
AN
] A
T e+A 4 1] .
+(xzD"9Z + x 40A + xcOG)R(I — a~1(I - AR)) : (97)
AN

A

Using (92) and (94) and fact that B7£ = DT(1+ ) and DTa | : | =0, have
AN
] M
DTa(I - t Al(1— AR)) |

AN

(A e +1)(xzD"0Z + x40A + xG0G) _,

L
(A le+1-L(1-0))

k=

Substituting the expression of k into (97), I finally get
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A

(L)2(A-Te 4+ o)) e+ A
98€ = ___C __C Doz 0A 9G)DTw(I — “WI1—-AR)) ! | :
T (}_\1€+1_g(1_0))(?cz + X40A + xc9G)D a( ¥ ( ) :
AN
) A
+(1zD"0Z + x40A + xcIG)R(I - 2011 AR)) ! | : 98)
AN
From (84), I have
YG (A le+0)9G — (A le+1)(LDT9Z + A
afC::___( ) ( (& )e (99)

cc (A 1+1-L(1-0))

I know 7€ = %e +07€ + 0%€. Combining (98), (99) and the expression of xz, x4

and xg, I prove the theorem.
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Proof for the examples

1. "Tree’ Networks:
Given this structure of production networks, I have R;,, to be either 0 or 1. Whenever
aim is nonzero, it indicates that industry i requires input from industry m, so I must have

R,,;; = 1and R,,; = 1 for any j # i for industry m. Thus
j yJ y

N e
Zmzl Aim, lf] =1,

N
(AR);i = Y @imRoyj =
! le o, ifj#i.

which gives

(1— 211 AR = —%1

The special case for this is a two sector model with vertical structure. Since R =

00
(1 0) 2l T have the expression (15)(16) in the main text.

2. Multiple Downstreams:

Given the expressions of A and R in (20), I have

aiNb aiNb -+ ainbny—1 O

aNby apnby -+ aonby-o1 O

AR — . . . s
an—nND1 an—inb2 o an—nbn-1 0

0 0 - 0 0

Thus,

2 The validity of assigning a zero value to R follows from the discussion in the main text.
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1 —ainby —aiNby - —a1NbN -1 0
—axNby 1—anby - —aaNbN -1 0
I — AR = . .
—an-nnb1t —an-pnb2 - T—a-ynbn-1 O
0 0 e 0 1
-1 _ 1 1 1 1
As o™ = diag (1—a1N’ e’ T N 1), I have
1_ etd  loainbi  _etd | ainby _etA  mNbN
€ 1—(111\] € l_alN € 1—6111\]
_ebd mnb kA lomnby S INNES
+ /_\ 3 1—ﬂ2N 3 1—[12[\] € 1—[12[\]
€ ) ) )
I— a 1(I—AR) = :
_etd, foeonbt o ed | Saeanb2 g epd | ANt
e l-an-1n e l-an-_1n € IT—aN_1)N
0 0 0
The change in the industry’s revenue tax satisfies
0
Ind T e+A 4 |,
AT = —(XzD BZ+XG8G) (I — R)(I — (V4 (I — AR)) AV.¥
0

It gives us

3 1_% 'Hm;éi,' #_1—’_{1"11\]

N-1
- Ll At

ifj #iandj < N
ifj = N.

where M = det (I - %a‘l (I— AR)). M always takes the negative values if
YN, b =1and 0 < a;y < 1. Thus I show that ATjI”d <Owhenj< Nandj#i.

Finally, I have
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Atimd A
i T tarN

Ind = )
ATk £ +ajn

S . Ind) > .
which implies that |AT; | Z | AT ff apn 2 agw, Vi K # 6
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Appendix B Empirical Evidence

B.1 Texture analysis of attention:

I employ dictionary-based frequency counts that identify the attention of different in-
dustries toward different macroeconomic topics. The methodology is based on the ap-
proach of Song and Stern (2023). For each topic, I match each topic with a keyword
dictionary composed of terms and phrases frequently found in Econoday, which pro-
vides updates on significant economic events and is the service behind the Bloomberg

economic calendar.

Topic Keywords

Output GDP, economic growth, macroeconomic condi-
tion, construction spending,
national activity, recession

Government Spending government spending

Fiscal Policy fiscal deficit, fiscal policy, tax rebate, govern-
ment subsidy,
government support

Production Networks intermediate input, intermediate goods, up-
stream, downstream

Table A1: Macroeconomic topics and keywords

For the U.S., I use all electronically available 10-K and 10-Q filings by publicly listed
US companies between 1994 and 2023. For China, I use the annual report of all listed
tirms in Shanghai Stock Exchange (SSE) and Shenzhen Stock Exchange (SZSE) between
2001 and 2022. The keywords for China are the same set as for the U.S., except that they
are translated into Chinese.

I classify U.S. industries using the 2-digit NAICS system. For China, the industry
classification follows the standards in the “Industrial Classification for National Eco-

nomic Activities,” as defined by the National Bureau of Statistics of China.
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Apple Inc.

Form 10-Q
For the Fiscal Quarter Ended December 30, 2023
TABLE OF CONTENTS

Part]
Financial Statements
Management's Discussion and Analysis of Financial Condition and Results of Operations
Quantitative and Qualitative Disclosures About Market Risk

Controls and Procedures

Part Il

Legal Proceedings

Risk Factors

Unregistered Sales of Equity Securities and Use of Proceeds
Defaults Upon Senior Securities

Mine Safety Disclosures

Other Information

Exhibits

Figure Al: Example: FORM 10-Q of Apple

Page

13
18
18

19
19
20
21
21
21
21

Notes: The content of the 10-Q report for Apple for the fiscal quarter ended December 30.
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The input-output data of China comes from the Asian Development Bank (ADB). To

compile the industry’s output data with the coding system following the NBS of China,

the table below shows the mapping for the industry names:

Industry: NBS of China

| Industry: ADB

Mining

Mining and quarrying

Manufacturing

Food, beverages, and tobacco

Textiles and textile products

Leather, leather products, and footwear
Wood and products of wood and cork
Pulp, paper, paper products, printing, and publishing
Coke, refined petroleum, and nuclear fuel
Chemicals and chemical products

Rubber and plastics

Other nonmetallic minerals

Basic metals and fabricated metal
Machinery, nec

Electrical and optical equipment
Transport equipment

Manufacturing, nec; recycling

Utilities

Electricity, gas, and water supply

Construction

Construction

Wholesale & Retail

Sale, maintenance, and repair of motor vehicles and motorcycles; retail sale of fuel
Wholesale trade and commission trade, except of motor vehicles and motorcycles
Retail trade, except of motor vehicles and motorcycles; repair of household goods

Accommodation & Catering

Hotels and restaurants

Inland transport
Water transport

Transport & Postal Air transport
Other supporting and auxiliary transport activities; activities of travel agencies
IT & Software Post and telecommunications
Finance Financial intermediation
Real Estate Real estate activities

Leasing & Business Services

Renting of M&Eq and other business activities

Public Admin & Social Services

Public administration and defense; compulsory social security
Other community, social, and personal services

Education

Education

Health & Social Work

Health and social work

Table A2: Industry Classification
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I construct an alternative measure of exposure to business shocks using the Inte-
grated Industry-Level Production Account (KLEMS). This dataset provides estimates
of total factor productivity (TFP) and labor productivity across various industries. An
industry’s exposure is measured by its correlation with either the aggregate TFP (us-
ing Total Factor Productivity at Constant National Prices for the United States) or labor
productivity (using Constant GDP per capita for the United States) from the Federal Re-
serve Bank of St. Louis (FRED). The results confirm that an industry’s attention remains

positively associated with its exposure to business cycle shocks.

TFP: KLEMS

Labor Productivity: KLEMS

0.20 0.20
° ®
® ® ® 9
@ [
- ° ° L .’
slope=0,014 (std_error=0.024) slope=0.012 (std_epgor=0.032)
® ° ® [ ]
0.15 4 ° 0.15 4 L]
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5 .’//J// 5
8 o //._‘
c . = O
£ ¢ e @ . £ ® » o "
< [ ° . < ® °
o ’ e -
0.10 L 0.10 1 o
o ® . @ .
: . @ o - @ e« o
. © . . °
° ° L
® o
0.05 0.05

-0.4 -0.2 0.0 0.2 0.4
Exposure to business cycle shocks

-0.2 0.0 0.2 0.4 0.6
Exposure to business cycle shocks

-0.4

Figure A2: Exposure and attention: alternative construction

Note: The exposures to business shocks are computed using the correlation of industry TFP (left) or in-
dustry labor productivity (right) with the aggregate TFP or aggregate labor productivity. The attention
is computed by taking the average attention index from 1997 to 2023. The three digit NAICS system

specifies the industry.

B.2 Regression:

To check the robustness of the calibration for g and 1, I refer to other ways to construct
the attention index. I use the attention index constructed by 10-K filling or the annual-
ized 10-Q attention index (averaging them within the same year). The assumption is
the same: the affine relationship exists between information precision and attention.
Table A3 shows the regression outcome for these two attention indexes. The value of 4
ranges from 0.342 to 0.691, with the baseline calibration for the U.S. set at 0.361, align-
ing closely with estimates from other approaches. Since I do not have firms’ forecasts of
overall economic output (GDP) for China, I use the 10-K attention result as the baseline
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calibration for China. Although the actual value of 81 and B may differ, in terms of the
focus for the industrial policy by using the industrial revenue tax, the theory suggests

that changes in optimal industrial revenue taxation are proportional to changes in 4
and independent of changes in fy.

10-K Attention Average 10-Q Attention
(1) ) 1) 2)
Forecast Difference Forecast Revision | Forecast Difference Forecast Revision
B1 0.667** 0.691*** 0.342 0.499**
(0.332) (0.206) (0.235) (0.206)
Bo 0.0141 0.0568
(0.0555) (0.0558)
1—Bo 0.590%** 0.270***
(0.0993) (0.0642)

Standard errors in parentheses
**p<0.01, ™ p<0.05, * p<0.1

Table A3: The estimation of By and B; for 10-K and average 10-Q attention

Note: The first column presents the results for regression (29), using the difference between the mean
forecast and individual forecasts as the dependent and independent variable. The second column shows
the results for regression (30), with forecast revisions as the dependent variable.
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B.3 Quantitative:

To compute the optimal tax for the U.S. and China, I use the input-output table data

from BEA for the US and ADB for China.

The theorem shows that optimal taxation

relies on two key matrices: the input reliance matrix A and the output allocation matrix

R. Figure A3 shows the heatmap for these two matrices for both countries:

Matrix A: US
Agriculture - 0.7
Mining - .
. °e
Construction -
0.5
Manufacturing -
Transportation and Utilities - 0.4
Wholesale Trade - . - 03
Retail Trade -
-02
FRL -
Services - - 01
| i | i ' | ' i | - 0.0
FAFS & & o # & P
& & F F & F ¢
& # & S . Pl
IS & & & &
& S i 5%
¥ &
&
&
=
&
@
s
Matrix A: China
Agriculture & Fisheries — 0.7
Mining -
Manufacturing - 0.6
Utilities - .
Construction —
]
Wholesale & Retail -
Accommodation & Catering - 0.4
Transport & Postal - )
IT & Software -
Finance — - 0.3
Real Estate -
- 0.2

Leasing & Business Services -
Public Admin & Social Services -
Education -

Health & Social Work —

Matrix R: US
Agriculture -, 0.7
Mining - .
. o8
Construction -
. 0.5
Manufacturing -
Transportation and Utilities — . 0.4
Wholesale Trade - . 03
Retail Trade -
. 02
FIRL -
Services - . -0l

i | | ' i | ' i - -0.0

Matrix R: China

Agriculture & Fisheries —, 0.7
Mining - .
Manufacturing - . 0.6
Utilities - .
Construction — ... 0.5
Wholesale & Retail -
Accommodation & Catering - .
Transport & Postal - . 0.4
IT & Software - .
Finance - -0.3
Real Estate - . .
Leasing & Business Services - -0.2
Public Admin & Social Services -
Education - -01
Health & Social Work —
[ e T N R A N -0.0

Figure A3: Heatmap of production network matrices
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To compute the optimal taxation for the industries within the manufacturing sector,

I recompute the input-output table for China, where the manufacturing sector is disag-

gregated into sub-industries to produce different types of goods. Figure A4 shows the

heatmap:

Matrix A: China
Agriculture & Fisheries -
Mining -
Food, Beverages, and Tobacco
Textiles _
Leather Products — L
‘Wood Products —
Paper Products, Printing, and Publishing - -
Coke, Refined petroleum, and Nuclear Fuel -
Chemical Products — L
Rubber & Plastics —
Other Nonmetallic Minerals -
Basic Metals & Fabricated Metal —
Machinery, nec —
Electrical & Optical EQuipment -
Transport Equipment -
Manufacturing, nec —
Utilities —
Construction — |
Wholesale & Retail -
Accommodation & Catering -
Transport & Postal —
IT & Software —
Fnance —
Real Estate -
Leasing & Business Services —
Public Admin & Social Services —
Education -
Health & Social Work —

Matrix R: China

Agriculture & Fisheries
ning
Food, Beverages, and Tobacco

Textiles
Leather Products -
‘Wood Products
Paper Products, Printing, and Publishing
Coke, Refined petroleum, and Nuclear Fuel
Chemical Products
Rubber & Plastics
Other Nonmetallic Minerals
Basic Metals & Fabricated Metal
Machinery, nec

Electrical & Optical Equipment

Transport Equipment -
Manufacturing, nec
Utilities
Construction
Wholesale & Retail
Accommodation & Catering
Transport & Postal
IT & Software
Fnance
Real Estate
Leasing & Business Services
Public Admin & Social Services —
Education —
Health & Social Work —

Figure A4: Heatmap include industries within manufacturing sector
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Appendix C Dynamic Model

I extend the framework into a dynamic model:

Model

Preference and Technology:

The preference of a representative household over consumption and labor is given by:

Cl o _ S+1
IEHHZ:B _Z£+1 1ktd]

kel0,1]

The household’s period-t budget constraint can be expressed in nominal terms, as
follows:

(14 1°)PCs + Beyy + / Qt+1,sDpy1,6ds =
Sest+1

N
Y. /6[0 ; [wijnije + 7t ¢]dj + (14 R¢) By + Dy o
i=1"77€lY

where B;;; denote non-contingent debt instrument, R; denotes the nominal inter-
est rate between t and t + 1. D;.1 ¢ denote the quantities of state-contingent assets (or
Arrow securities), Q;11s denote the cost of the state-contingent assets, and T denote
proportional tax on consumption. The production side is the same as the static model.
The key assumption is that Dy o equals zero for any realization of sp. In other words,
the time 0 shock is not insured by the state-contingent asset, meaning period 0 shock is
treated as unexpected. For the Cobb-Douglas production function, the effective tax rate
on the final consumption goods is given by

(1+7) =TI _ (1415, (100)

Government:

The government’s budget constraint for period t, in nominal terms, is given by
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Bi(1+ Ri) + Dy + PG = Brya + [ QriaoDrsnds + T, (101)
S

where G; is exogenous real level of government spending and T; is nominal level of
tax revenue:

N N
To= 3 [y T piaiadi + Y ipisc (102
i=1 ’ i=1

Information Friction:

Nature draws a random variable s; from a set S; in each period t. The state at ¢ is repre-
sented by the history of shocks, denoted as st = {so,51,...,5t}. The agents on island j
of industry i receive a random variable wfj

bution CIJi/t(wf].|st). This variable captures all the information that the firm and worker

from a set Q)f, following a probability distri-

on island i of industry i has in period ¢t. The probability distribution ®;; is industry-
specific, meaning that firms in different industries may receive signals from different
distributions. There are two stages. In stage 1, the firm decides labor demand lij(wfj)
to maximize the utility-adjusted after-tax profit, given his information w;; ;. The worker
decides labor supply nij(wfj) to maximize the expected utility. In stage 2, when prices
and tax rates are realized, the firm chooses intermediate input xij(wfj, s') to maximize
its profit.

I am restricting the information frictions to the production side where the representa-
tive household and the government have complete information as Angeletos and La’O
(2020). The household chooses consumption C;(s!), the non-contingent debt B; 1 (s')
and the state-contingent asset D, ;++1(s'*!) to maximize his expected utility function

given the prices and policy rates subject to its budget constraint.

Ramsey Problem

The prices of different industry goods, consumption goods, government bonds, and
state-contingent assets are functions of state s':

{Pis(s"), Pe(s"), Re(s"), Quorsn (s71))}
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The Ramsey planner sets the policy rates that are state-contingent on the whole his-
tory s':

{Ti(s"), 75 (s")}

The labor functions n;j(w t]) Lij i (w f]) are measurable to the signal wlj, and inter-
mediate input xi]',t(wfj,st) are measurable to the tuple (w! 1 st). Given the tax rates, an
equilibrium is triplet of allocations, prices and policy rates that satisfy (i) C¢(-), B¢(-)
and D;s(-) solve the household’s problem; (ii) /;;;(-) and x;;(-) solve the firm’s prob-
lem; (iii) nz-]-,t(-) solves the worker’s problem (iv) the resource constraint is satisfied; (v)
the government’s budget constraint is satisfied; and (vi) all markets clear. The Ramsey

planner chooses the tax functions to maximize welfare.

Optimal Taxation
The following proposition characterizes the feasible set of equilibrium:

Proposition 5. A feasible allocation, ¢ € X, is part of an equilibrium if and only if the following
two properties hold: (i) the allocation satisfies the implementability condition:

Z B'Eqi0Ct( Z B'Egc0 Z Tis =0 Vso (103)

(ii) for any t and s', there exist functions gbft( st) and yb“’d (s') such that the equilibrium
conditions from f.0.s of households and firms are satisfied:

<*>>ﬁ1 i ey
— t(S)—Ct(S)—O (104)

ﬁ(zzt s L7} (s DT, zkt( s') — aly (s

Bi
ajj .
ﬁﬂ,t(st)Li,t(St) = P (s") Xije(s") Vi,j (105)
Eg), Ti(s") = nj; (w);) Vi (106)
By _ (ot N
Liale) = /je[o,l] nl]’t(wij)d] (107)
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where

Py(s') = SUft(St)ﬁiCt(St)_USi((sf))

Tile) = Wl B S bt TTX

Definition 3. The information is symmetric iff each industry i receive signals from the same

distribution w' conditional on st: ®;(w!|s!) = ®(w!|sh).

Theorem 3 (Generalizing Proposition 2). If the information is symmetric, the optimal taxa-

tion is to set

llfd( ) =0 Vit,s

T (s) = L (s) Vit st

We still have equalized tax rates on consumption goods and zero revenue tax. The
difference from the complete information case is that the consumption goods tax is not
constant. Instead, it depends on the realization of s’. The reason is that the govern-
ment should tax agents when they collectively have less information, as it distorts labor
less. The information precision depends on the history of shocks. For asymmetric in-
formation, assume that the shocks and information structure are Gaussian. I have the

following generalizations:

Theorem 4 (Generalizing Theorem 2). The optimal industry revenue tax at state s' is given

by )
Ind _ T B CEFA g ~13
" = —(xzD"'9Z + xg9G)(I — R)(I a (I —AR)) "As
A = ZN=1 a;DjAjy
where Aiy = Ay — Ay, Ay = == and
]'t ]'t ¢ t Z]I\Ll Dé]D]

t
Ap=1=T]Kjm
m=0

where K; , is the Kalman weight on the past forecast for forecaster in industry j at

period m.
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Proof for the dynamic model
Proof of proposition 5

Proof. Necessity. I characterize the equilibrium conditions to prove the necessity: I
tirst solve the optimal behavior of the representative households, firms, and workers
on different islands in different industries. The representative household chooses the
{Ci(s"), Bt(s'), Dt(t,s") } to maximize his expected utility. The Lagrangian for the house-
hold’s problem is given by

) C(St)l _
H _ t t . e+l
_t;)ﬁ/{ 1—0 ZS+1/ 01 1]t z d]

=) [ T EDREICHE) + Buals) + [ Qen(e)Desas(s)
) | [ ol () + el )
+ (14 Re(s")Be(s"™1) + Dy e (s) }d‘i’(st)
The FO.Cs are given by
Uer(s') — " (s") (14 77 (")) Pi(s") = 0, vs' (108)
]/lHH( ) + [B]EStJrl‘St‘MHH( t+1) (1 + Rt—l—l( )) =0, Vst (109)
—Pr(s"™[s) Qp g ger (s (") + Ut (s = 0, ! (110)

Combining (108) and (109) I derive the household’s Euler equation

uc( t) Uc(st""l)

TR = P ey 0 ke am

From (108) and (110), I find that the state-contingent price satisfies

Ue(s™) (14T (s")Pi(s")

Uc(st) (1478 (")) Py (s141) (112)

O = BP9

) Pr(s'), and then

Multiplying the household budget constraint at s’ by ,Btms—fm
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integrating over s’ conditional on s’:

¢ ¢
B e+ 7
Uet(s')  Qry1,5(8)Dirs(8)
+/€St+1 Trato) +1 o t)+1 ds} d¥(s'|S°)
uct 1 /
(1+1f(s ) Pt(St)Z/ 0,1] (<o () + 7 (o 1)1

Bi(s'~ )+ Uet(s')  Dyg(s')
(T+7f(st)) Pe(st)

— gt /
Ues(s') (14 Ri(s' )
(1+77(s)) Py(st

)> ] d¥ (s'|sY) (113)

Summing the above equation over t and combining with (111)(112), I have

Z p ]Esf|50C1 “( Z .B ]Esf|so Z/ wz] nz]( ) + 7'(1]( ijr 8 t)]dj
= Z B ]Est‘socl U Z ﬁ IESt|SO Z 1 — TInd ]91 t( )th (X lel H szt

= Zﬁ lEst|50C1 U Zﬁ IE:sf|so ZT

Ueo(s°) (1+R0( ))Bo(

B y
T AT ) Bo() =0 (19

where I assume By = 0 to ensure that period 0 is not treated as special. 7;;(s") and
P, (s") are defined by in our static model:

] _ —Upi,t(s)
Pl,t(St) = Ct(St) Pt(S) (115)
. — t fapi,t(st) _ Andg t “z
7;,1?(5) = Ci(s") Py (st) (1 Tt (s ))th )i L Hszt (116)

I have the implementabiliy constraint (114). For the production side, I solve the
equilibrium conditions backwardly. The equations are the similar to those in the static
model. Then I prove proposition 5: .

Sufficiency. Take any allocation ¢ that satisfies (114)(104)(105)(106). I now prove that
there exists a set of tax rates

{5 (sH a6
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alocal wage w;j s (w ]) relative prices {p; +(s') }ic {1, N}, an interest rate function Ry 1 (s"),
and a path for nominal debt holdings B;,1(s') and assets Dy g1 (s'*1) that implement
this allocation as an equilibrium. I construct the equilibrium prices and policies as fol-

lows.
By normalizing the price of final goods P;(s') to be 1, the relative prices are given by

Pi,t(st) _ t\o t
Psh) Ce(s") Py (s)

The local wage rate is

The state-contingent taxes are derived by using (115) (116):

lplﬂd( )
C(st)) = . TInd _ it
(1 + Tl,t( )) l/Jgt(St) (1 + ( )) l/)ft(St)

The f.o.c of intermediate goods are satisfied by using (105). The f.o.c of workers are
satisfied by the way I determine the wage. The f.o.c of the firms for labor are satisfied
by using (106). The resource constraint is ensured by (104).

The interest rate functions are determined by using the Euler condition:

Uc(s")
(47 (s")) Pe(s")

uc (St+1)
BE | e e

(1+ Rppa(s)) =

g

The price of Arrow security is given by (112). By these prices, I know the f.o.cs of the
household are satisfied. The last thing to check is the budget constraints of the represen-
tative household. Multlplymg the household budget constraint by g m#)))(sf) Pr(sf|s™),
integrating over s’ and summing the above equation over t. Combining with the expres-

sions of asset prices, the government bond holdings are given by
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mfl) _ uC,m—l(Sm_l) 1

Biu(s X
L G B
Z ,3 ]ESt|Sm 1C 7 Z ,3 IEst‘Sm 1 ZT St VYm > 1,Vs™
The holdings of state-contingent assets are given by
my _ Pm(sm) 1- o
Dm,sm (S ) = Z ‘B IEStISmC Z ﬁ IESt|Sm ZT

U m (s™) (1 + 15 (s™))
—(1+ RS ))Bu(s™ ) ¥Ym >1,Vs"

Then, it’s straightforward to check that the household’s budget constraint is satisfied
for t > 1. And using (103), the budget constraint also holds at time 0. Thus, I have
completed the proof of this proposition.

O
Proof of theorem 3 and theorem 4
Proof. For the Ramsey problem, by combining (106)(107), I have
1
]wak\sf Es’\wik’ﬁ,t(sl) = Li,t(st) (117)
Using the primal approach, the Ramsey planner chooses
{Cii(why), Lis(why), Tip(wiy), Tys(wiy), Xiji(wi) } (118)

which are measurable to s’ to maximize the expected utility

-0 i=1

CHo(st) —1 1 7
Z[“E { (s) ~ e L Bugge [Boja Tis(s)| } (119)

subject to the constraints (103)(104)(105)(117). The Lagrange for the Ramsey problem

is
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Cl 0( )_1 1 N 1te

LDYnarmc _ Z'B /{ = — Tre i_zlefkw []Es/|wik7;,t(s’)] €

+uR (s ﬁ(zlt s')Liy(s) TR ‘1Bk.t( t)Eii\]lei,t(st)>ﬁl

+ Z#Lt [IE st [ S/|wltk7;,t(5/)} i Li,t(st)]

— Gi(s") — Ci(s")]

N N
Y Y (s o (s Lis(s') = Pi(s") Xij(s")] } d¥(s')

i=1j=1
+/'uG’O {Z‘B]Est|socl U ZAB]EstISOZT }dT( )

I first solve this relaxed Ramsey problem and then verify this solution is within the
feasible set of equilibrium for the original Ramsey problem. The f.o.cs of the problem
are similar to those for the static model if I replace the state s in those functions by state

St

, except that for the implementability constraint, the multiplier is not state-contingent
on s!, but it is also related to the period 0 shock s°. The effects of shocks after pe-
riod 0 can be smoothed by the state-contingent assets Dys. I assume that p;i(s') = 0,
Tis(s) = (D) F1T5(st), iy (s) = (Dja;) &1k (st). The proof strategy is similar to the
static model. The implementability condition is different from the static model:

Y BE 0 (Y(s') — G(s)' 7 — Y BB Ti(sL(s5 7o) = 0
t=0 t=0

The equation (57) hols if I replace s by s’ and w;; by w!.. And (52) becomes
q p y ] y ij

—0

(1= 0)pc(s0) + DYi(s)Cr(s') = up(s)Le(s"; Tr) + pg,e(s) Te(s ) Le(s; To)

Again, I can compute L;(s'), Xjj;(s"), Yi(s"), Ci(s") from the guess and equilibrium
conditions once I know T;(s!). Thus, I have three sets of equations shown above and
three sets of unknows {7:(s"), ur(s"), g +(s0) }. 1 got the equilibrium by solving the

functional equations and combining the guess and how I constructed the solution. In
Ind
] t

(s') are equalized as in the static model.

this equilibrium, it’s easy to check that the optimal revenue taxes 7/7%(s')) are zeros and

C
] t
When the information is asymmetric, I refer to the perturbation approach. The dif-
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ference is that, the counterpart for Aj from the static model to the dynamic setting is

“sz

Aj = Eq [E,y [so)]

With the state-contingent asset, the effect of shocks after 0 on the government budget
constraint will be perfectly smoothed. Thus, what matters is only the period 0 shock.
But the distribution beliefs of sy update and is associated with the underlying state s'.

The forecasters i in industry j update his forecast of the s rate using a Kalman filter,

as follows 22:

M ub K rivate
Eijelso] = {1—) Ap,], Y )\p,]t E;jt—1[s0]

n=1 n=1

pub Apub private Aprlvate
+2An],t n,t ZA,], ,]nt
n=1

where Ap ; an nd )\pnvate are the Kalman gains for the n-th public signal J?Elib and n-th

/]/ /]/
private signal Af]/: ;. Taking the expectation over wf]-:

M K
b
Eq [ [s0]] = (1 R IRHTED Y A"f;”te) Eg-1 i1 [s0]

n=1 n=1

pub prlvate
+ ZAn]tSO_i_ Z/\ n,jt
n=1
= KjiEg1 [E;s-1[s0]] + (1 = Kj1)so
t—1 t
=KiyQ—=T] Kimso+ 1 —=Kj)so=1—T] Kjm)so
m=0 m=0

The theorem can be proved using mathematical induction. Regardless of the num-
ber of shocks or whether the types of signals are known, this theorem can be easily
applied by running a regression on the forecast data to obtain the Kalman weight on the

previous forecast, K; ;.
O

22The signal received before t = 0 has no useful information about the unexpected shock sg
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