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Abstract

This paper studies optimal taxation in a multisector economy characterized by in-

formation frictions and a production network through which firms trade intermedi-

ate goods. I show that the production efficiency result holds in an economy where

information frictions are symmetric across industries. In the context of production

networks, I find two key matrices that play a crucial role in determining the optimal

taxation: the input reliance matrix and the output allocation matrix. The optimal

taxation is solved in a closed form by using both matrices and the difference of in-

formation rigidities. The study shows that the government should impose higher

revenue taxes on an industry when (i) it has greater information rigidity, (ii) its up-

stream industries have smaller information rigidity, and (iii) its input goods are also

used by less informed industries in recession. To quantify the model, I use text anal-

ysis. Industries exhibit varying degrees of attention to economic outcomes, with

some being consistently more attentive than others. This attention is positively cor-

related with an industry’s exposure to business cycle shocks. The calibrated model

indicates that, in response to the COVID-19 shock, China should shift its tax burden

onto the utility, agriculture, and transport industries, leading to a welfare increase

of 0.7% for the U.S. and 1.23% for China.

Keywords: optimal policy, production networks, informational frictions, business

cycles
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1 Introduction

Recently, a growing literature has emphasized the importance of production networks,
where shocks can propagate through the production chain and significantly affect the
entire economy. In a multisector economy with input-output linkages, the optimal taxa-
tion policy under complete information satisfies the production efficiency result, which
ensures that marginal rates of transformation are equalized across technologies in dif-
ferent industries. The government achieves this by setting zero tax rates on interme-
diate goods and equalizing tax rates on consumption goods (Diamond and Mirrlees,
1971; Chari and Kehoe, 1999). However, this result relies critically on the assumption
that agents possess complete information about the future state or, if uncertainty ex-
ists, that agents have common knowledge of it1. In contrast, sticky information (Sims,
2003, 2010), rational inattention (Mankiw and Reis, 2002), and higher-order uncertainty
(Angeletos and La’O, 2020) prevent agents from fully learning the true state, leading to
dispersed and heterogeneous expectations about the future across households (Guer-
reiro, 2023) and across firms in different industries (Song and Stern, 2024; Flynn and
Sastry, 2024). Given this complexity, how should a Ramsey planner design optimal tax-
ation in a world with production networks and incomplete information? Would the
production efficiency result still hold? If not, what would the structure of the optimal
taxation look like, both in theory and in practice, to minimize welfare costs from shocks
like the Covid-19 pandemic?

In this paper, I address these questions within a multisector framework featuring
input-output linkages across industries and information frictions. The paper makes
several contributions. Theoretically, I provide a sufficient condition for the production
efficiency result to hold. I derive a closed-form solution for the optimal taxation and
identify two key matrices within production networks that determine the optimal tax
rates. Empirically, I find that attention is consistently asymmetric across industries,
regardless of business cycle fluctuation, and that this asymmetry is positively correlated
with industry’s exposure to business cycle shocks. Quantitatively, I apply the model to
compute optimal tax structures for both the U.S. and China, evaluating the welfare loss
if the government assumes symmetric information frictions. Additionally, I compare
China’s 2019 tax reforms, implemented during the pandemic, with the model’s optimal

1I follow the definition of complete (incomplete) information as outlined by Angeletos and Lian
(2016). By complete information, I mean that agents have common knowledge of the economy’s infor-
mation set, though there may still be uncertainty about both aggregate and industry-specific shocks.
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taxation and discuss implications for China’s industrial policy.

Theory I begin with a static model in which agents receive signals about the under-
lying state, with the distribution of these signals varying across industries. This setting
allows that agents in different industries may possess varying degrees of precision in
their information about shocks. The government selects a state-contingent tax schedule
to maximize social welfare, ensuring that tax revenues are sufficient to cover govern-
ment spending for each realization of the state. Two key findings emerge. First, the
production efficiency result holds if information friction is symmetric2. Second, I de-
fine two key matrices: the input reliance matrix and the output allocation matrix. By
applying a first-order perturbation to the economy, the optimal tax functions can be de-
rived in closed form using these matrices and the difference in information precision.
The Ramsey planner faces a trade-off between labor distortion in the first stage and
intermediate goods distortion in the second. I explore how the interaction between pro-
duction networks and information frictions shapes this trade-off and redefines optimal
taxation, using specific examples from production networks. Finally, I extend the model
to a dynamic setting, showing that the main result holds, except that the consumption
tax is no longer constant over time, even with symmetric information. In the dynamic
model, the information precision from the static model is replaced by a function of the
sequence of Kalman gains.

Evidence: To measure information frictions, I follow the approach of Song and Stern
(2024) and apply text analysis to construct an attention index. For the U.S., I use the
Securities and Exchange Commission (SEC) 10-Q filings of public firms, and for China,
I use the annual reports of listed firms. The results show that attention is consistently
asymmetric across industries for both countries and is positively correlated with expo-
sure to business cycle shocks.

Quantitative: To translate the attention index into the information precision, I follow
the approach of Bui et al. (2024) and incorporate the regression model developed by
Goldstein (2023). I refer to the Survey of Professional Forecasters (SPF) to calibrate for
information frictions. The calibrated model indicates the optimal revenue tax rates for
the U.S. are modest. The tax rates on wholesale and retail trade, manufacturing, and
services are close to zero, while the government should provide slight subsidies to the
FIRE and construction sectors while shifting the tax burden onto the agriculture and

2Symmetric information does not eliminate dispersed beliefs and actions among agents.
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mining industries. In contrast, the optimal revenue tax rates for China are higher, and
the Chinese government should shift its tax burden onto the utility, agriculture, and
transport sectors. The Chinese government has long implemented industrial policies
that subsidize selected industries. This paper finds that, considering the asymmetric
attention across industries within the manufacturing sector, industrial policy should
favor more modernized industries during the pandemic. Optimal taxation that accounts
for information frictions would lead to a welfare increase of 0.7% for the U.S. and 1.23%
for China, compared to a policy with uniform consumption taxes and zero revenue taxes
as implied by the symmetric information case. By some counterfactual exercises, I find
that the production networks can have a fundamental impact on the optimal tax rates.

Literature This paper belongs to a large literature analyzing the optimal taxation,
the so-called Ramsey problem, particularly for those that examine optimal taxation for
each industry by considering production networks (Diamond and Mirrlees, 1971; Atkin-
son and Stiglitz, 1976; Chari et al., 1994; Chari and Kehoe, 1999; Scheuer and Werning,
2016). These studies address both linear and nonlinear taxation in either representative
or heterogeneous agent models and consistently find that the Ramsey allocation satis-
fies production efficiency, which implies that setting tax on intermediate goods to be
zero is optimal. Diamond and Mirrlees (1971) supports the idea of uniform commodity
taxes when production efficiency is prioritized. Atkinson and Stiglitz (1976) discusses
the conditions under which uniform taxation of goods is optimal, particularly under
separable preferences between goods and leisure. The contribution of this paper to
this literature is to introduce information frictions into the model, which allows me to
explore how information frictions influence optimal taxation, particularly in the frame-
work with production networks. This extension is crucial as it provides a more realistic
framework for understanding fiscal policy in the world with incomplete information.

A series of recent papers do consider the interaction of information frictions and
production networks (Atolia and Chahrour, 2020; Chahrour et al., 2021; Bui et al., 2024;
Lian, 2021; Pellet and Tahbaz-Salehi, 2023). For instance, Chahrour et al. (2021) shows
that information shocks disseminated by the media can independently drive business
cycle fluctuations, using this mechanism to explain the 2009 Great Recession. Simi-
larly, Bui et al. (2024) examines the propagation of noisy shocks and productivity shocks
through production chains, finding that noise shocks exhibit greater persistence across
production networks compared to TFP shocks. Pellet and Tahbaz-Salehi (2023) investi-
gate how firms optimally select intermediate goods, revealing that firms tend to favor
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less volatile supply chains under conditions of incomplete information, even at the cost
of foregoing more efficient options. While these studies treat policy rates as exogenous,
this paper investigates optimal fiscal policy within a production network framework
that incorporates information frictions.

Finally, there is a strand of literature that directly addresses optimal policy design
under informational frictions. For instance, Angeletos and La’O (2020) examines opti-
mal monetary and fiscal policy in an environment where firms face both real and nomi-
nal rigidities, but they do not account for production networks. La’O and Tahbaz-Salehi
(2022) study optimal monetary policy within a production network framework, show-
ing that optimal policy is shaped by the interaction of an industry’s position within the
network and the degree of price stickiness. Wang et al. (2024) extend this framework to
an open economy, finding that monetary policy should place large weights on inflation
in sectors with small direct or indirect import shares through downstream sectors. Fang
et al. (2024) considers endogenous information rigidities, demonstrating that the opti-
mal price stabilization index and endogenous price rigidity are jointly determined and
interact with one another.

This study complements the series of works initiated by La’O and Tahbaz-Salehi
(2022). While their analysis focuses on monetary policy, this paper centers on fiscal
policy. Nevertheless, I find that, much like monetary policy, optimal fiscal policy is
significantly shaped by the interaction between production networks and informational
frictions.

Outline The rest of the paper is organized as follows: Section 2 introduces the bench-
mark model. Section 3 formulates the Ramsey problem by characterizing the equilib-
rium conditions. In Section 4, I discuss the main theorem for both symmetric and asym-
metric information cases, using examples to illustrate the role of production networks.
Section 5 calibrates the model and presents the quantitative results. Section 6 concludes.
Technical proofs are mostly delegated to the Appendix.

2 The Benchmark Model

In this section, I describe the benchmark model for a static economy. In the appendix,
I extend this framework into a dynamic setting. The model features a representative
household with N industries, each consisting of a continuum of firms with different
information about the underlying states. Based on their information, firms use interme-
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diate inputs and labor input to produce output, which is sold both as an intermediate
good to other industries and as inputs for the final consumption good. A benevolent
Ramsey planner sets the fiscal policies under full commitment to maximize the welfare.
Lump-sum taxes and transfers are ruled out.

2.1 Production

There is a set of N industries, denoted by i ∈ {1, . . . , N}. Each industry contains a
continuum of islands indexed by k ∈ [0, 1]. On island j of industry i, there is a repre-
sentative firm that produces a variety yij using inputs from other industries, as well as
labor. Firms in each industry employ Cobb-Douglas production technologies to trans-
form intermediate inputs and labor into final products:

yij = zil
αi
ij ΠN

k=1x
aij
ij,k (1)

where lij is the amount of labor hired by firms on island j of industry i, xij,k is the
quantity of good k used for production of good i on island j, αi represents the output
elasticity with respect to labor in industry i’s production technology, and aij denotes the
output elasticity with respect to intermediate goods from industry j, and zi captures the
Hicks-neutral productivity shock. The assumption of constant returns to scale technol-
ogy implies that αi + ∑N

j=1 aij = 1 for all i.
The nominal profit net of taxes is given by

πij = (1 − τ Ind
i )piyik − wiklik −

N

∑
j=1

pjxik,j (2)

where wij denotes the nominal wage rate in industry i and island j, pi denotes the
nominal price of goods produced by industry i, and τ Ind

i denotes the revenue tax im-
posed on industry i.

To aggregate the goods produced by different industries into a final consumption
good, there exists a final consumption goods sector. The consumption from different
industries is aggregated using Cobb-Douglas technology:

Y = ΠN
i=1(

ci

βi
)βi

where βi denotes the consumption share of goods from industry i. The constant
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returns to scale technology implies that ∑N
i=1 βi = 1

2.2 Household

The household has CRRA preferences over consumption C and labor nij

U(C, {nij}) =
C1−σ − 1

1 − σ
−

N

∑
i=1

1
ε + 1

∫
j∈[0,1]

nε+1
ij dj

and faces a budget constraint expressed in nominal terms as

PC =
N

∑
i=1

∫
j∈[0,1]

[wijnij + πij]dj

where nij is labor supply in industry i and island j, P is price of final consumption
goods, and πij is firm’s profit in industry i and island j. The household has income
sources from both wage payment and profit income. All his income is used to pay for
the consumption.

2.3 Government

The government’s budget constraint, in nominal terms, is given by

PG =
N

∑
i=1

∫
j∈[0,1]

τ Ind
i piyij dj +

N

∑
i=1

τC
i pici (3)

where G denotes the real government spending and τC
i is the tax rate on consump-

tion goods from industry i. The government can finance its spending through both
consumption taxes and industry revenue taxes (both are proportional tax rates), but it
can not use lump-sum taxes or transfers.

2.4 Market clearing:

Market clearing in the goods market is given by

Y = C + G (4)
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which is the resource constraint for the economy: the final output is either consumed by
households or utilized by the government. Market clearing for industry good i is given
by

N

∑
k=1

∫
j∈[0,1]

xkj,i dj + ci =
∫

j∈[0,1]
yij dj (5)

where
∫

j∈[0,1] xkj,i dj represent the overall use of goods i as intermediate goods in
industry j and ci represents the use goods i as input for final consumption goods. The
output of industry i must satisfy the combined demand for both consumption goods
and intermediate goods. Market clearing for labor requires

nij = lij (6)

The labor demand equals the labor supply on every island and industry.

2.5 The Informational Structure

Nature first draws a random variable s from the set S, which contains all possible states
for the economy. Its probability is denoted by Ψ(s). The variable s contains not only the
innovation of fundamentals (Beaudry and Portier, 2006; Jaimovich and Rebelo, 2009)
like the productivity of each industry zi(s) and the real government spending G(s) but
also the information frictions of the economy (Lorenzoni, 2009; Angeletos and La’O,
2013). The economy proceeds in two stages.

Stage 1:

In this stage, the representative household assigns one worker to each island of each
industry. Unlike the perfect information economy where everyone has common knowl-
edge about the underlying state s, I assume that workers and firms on island j of the
industry i receive a noisy and idiosyncratic signal ωjk about s at stage 1. I don’t specify
ωjk as it may be arbitrary information. It may contain information not only about fun-
damentals but also about the beliefs of other firms. Given this information ωjk, agents
form their beliefs about both the underlying shocks and the actions of other agents. I
denote with ϕi(ωij|s) the probability of receiving signal ωij for agents in industry i con-
ditional on state s, with ϕi(s|ωij) the probability of s conditional on receiving signal ωij

and with ϕi(ωij, s) the joint probability of s and ωij. The probability functions ϕi are
8



dependent on i, so I allow different industries to have different information precision
regarding the state s.

Firms aim to maximize the expected utility-adjusted after-tax profit. The firm’s prob-
lem PFirm is formulated as:

max
lij

Eij

[
Uc

1
P
[(1 − τ Ind

i )piyij − wijlij −
N

∑
k=1

pkxij,k]

]
s.t. yij = zil

αi
ij ΠN

k=1x
ai,j
ij,k

where Uc is the stochastic discount factor measured by the marginal utility and Eij

represents the firm’s expectation, which is associated with the information ωij available
to it. For workers, they aim to maximize their expected utility by choosing labor supply
nij based on the signal ωij. Thus, the problem of workers PWorker is formulated as

max
nij

Eij

[
C1−σ − 1

1 − σ
−

N

∑
i=1

1
ε + 1

∫
j∈[0,1]

nε+1
ij dj

]

s.t. PC =
N

∑
i=1

∫
j∈[0,1]

[wijnij + πij]dj

Stage 2:

In the second stage, goods markets open, market prices {p1, . . . , pN} and tax rates
{τ Ind

1 , . . . , τ Ind
N } and {τC

1 , . . . , τC
N} are realized. The true state s becomes common knowl-

edge across all agents. Firms on islands of different industries then decide on the quan-
tity of intermediate goods xik,j from other industries based on their initial decision of
labor, the prices of intermediate inputs, and the revenue tax rate to maximize their prof-
its πik. Frims on the final consumption goods sector make decisions for the industry’s
goods {ci} to maximize their profit U, given the realized prices of and taxes on con-
sumption goods.

2.6 Equilibrium and Ramsey Problem

The aggregate quantities C(s), Y(s), G(s), yi(s), ci(s) are determined as functions of the
state s in accordance with the specified tax rates. The labor functions {nij(ωij), lij(ωij)}
are measurable to the signal ωij since they are decided in stage 1, and intermediate
input xij(ωij, s) are measurable to the tuple

(
ωij, s

)
as it depends on the labor input at
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first stage and prices at the second stage. In the aggregate level, let Li(s) denote the total
labor demand in industry i and Xij(s) denote the total demand of intermediate goods
from industry i in industry i:

Li(s) ≡
∫

k∈[0,1]
lik(ωik)dk; Xij(s) ≡

∫
k∈[0,1]

xik,j(ωik, s)dk (7)

Then I define the equilibrium for the model:

Definition of Equilibrium

An equilibrium, based on the given tax rates, is a collection of allocations:

ξ ≡ {Y(s), C(s), G(s), yi(s), ci(s), Xij(s), Li(s), yij(ωij, s), xij,k(ωij, s), nij(ωij), lij(ωij)}

such that (i) nij(ωij) solves the worker’s problem at stage 1; (ii) C(s) solve the house-
hold’s problem at stage 2; (iii) lij(ωij), xij(ωij, s) solve the firm’s problem at both stages;
(iv) the resource constraint (4) is satisfied; (v) the government’s budget constraint is
satisfied; and (vi) all markets clear.

Now I define the Ramsey planner’s problem. The Ramsey planner chooses state-
contingent tax functions:

τ Ind(s) ≡ {τ Ind
1 (s), . . . , τ Ind

N (s)},

τC(s) ≡ {τC
1 (s), . . . , τC

N(s)}

to maximize the expected utility of the representative household Es
[
U(C(s), {nij(ωij)}

]
.

By setting different state-contingent policy functions, the economy achieves different
distribution of equilibrium, and these different equilibrium distributions lead to vary-
ing levels of welfare. Consequently, the benevolent Ramsey planner utilizes tax instru-
ments (state-contingent proportional taxes) to select an equilibrium distribution from
the set of all feasible distributions that maximizes household welfare, while ensuring
that tax revenues are sufficient to cover government spending, P(s)G(s), for every state
s.
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3 Solving the Ramsey Problem

I use the primal approach to solve the Ramsey problem. To ensure that a Ramsey out-
come constitutes a competitive equilibrium, I must show first that all possible alloca-
tions in the choice set of the Ramsey planner constitute a competitive equilibrium. The
following proposition states the conditions:

Proposition 1 (Conditions to Support a Competitive Equilibrium). Given the aggregate
and industrial shocks {G(s), {zi(s)}N

i=1}, the allocation ξ and the price {P(s), pi(s), wij(ωij)}
can be supported as a competitive equilibrium if and only if there exist functions Ti(s) and Pi(s)
measurable to the state s, and they satisfy the following conditions:

1. The aggregate resource constraint:

ΠJ
i=1

(
zi(s)Lαi

i (s)Π
N
k=1Xaik

ik (s)− ∑N
k=1 Xki(s)

βi

)βi

− G(s) = C(s) (8)

2. the implementability constraint:

C(s)1−σ =
N

∑
i=1

Ti(s)Li(s) (9)

3. the first-order conditions for intermediate goods:

aij

αi
Ti(s)Li(s) = Pj(s)Xij(s) (10)

4. the first-order conditions for labor:

∫ [
Es′|ωik

Ti(s′)
] 1

ε
ϕi(ωik|s)dωik = Li(s) (11)

Proof. Please see the appendix A.

Ramsey problem:

Based on proposition 1, the Ramsey planner is to maximize the utility function of the
representative household:

11



∫
s∈S

[
C(s)1−σ − 1

1 − σ
− 1

ε + 1

N

∑
i=1

∫
[Es′|ωik

Ti(s′)]
ε+1

ε ϕi(ωik|s)dωik]Ψ(s)ds (12)

subject to the constraints (8) - (11). Here the disutility function of labor is replaced
by using Ti(s) as in equilibrium

nik(ωik) =
[

Es′|ωik
Ti(s′)

] 1
ε

So, the optimization only involves functions that are measurable with s. The first-order
conditions of the Ramsey problem are shown in the appendix A.

4 Optimal Taxation

Definition 1. The information is symmetric iff each industry i receive signals from the same
distribution ω conditional on s: ϕi(ω|s) ≡ ϕ(ω|s), ∀i.

Proposition 2 (Symmetric Information). Assume there are both government spending shocks
and industrial productivity shocks {G(s), {zi(s)}N

i=1}. If the information is symmetric across
industries, the optimal taxation is to set

τ Ind
i (s) = 0, ∀i, s

τC
i (s) = τC

j (s), ∀i, j, s

Proof. Please see the appendix A.

When the information is symmetric, the optimal taxation is to set the industrial rev-
enue tax to be zero and the consumption goods tax to be the same. This proposition
extends the production efficiency results of Diamond and Mirrlees (1971) and Chari and
Kehoe (1999) from a complete information environment into an information frictional
economy. I can treat complete information as a special case of symmetric information
friction. Apart from the assumption of symmetry, there are no other constraints on the
structure of the signals. The information friction can take any form, with signals poten-
tially conveying both fundamental information and beliefs about others. People can still
have heterogeneous beliefs about the economy at the first stage, both within and across
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industries. The proposition holds as long as the information friction remains symmetric,
which gives us the benchmark result.

What happens if the information is asymmetric? For example, firms in industry i
may have more precise knowledge about a productivity shock within their own indus-
try than those outside of it (Fang et al., 2024). When it comes to aggregate shocks, the
impact varies across industries, leading firms to allocate differing levels of attention to
the shock depending on their exposure to it.

In general, the answer to this question is not easy, as it relates to the higher-order
belief of agents. The way I make the problem tractable is to use the perturbation ap-
proach. The perturbation approach has been employed by Bhandari et al. (2017, 2021)
to solve the Ramsey problem for representative-agent (RA) and heterogeneous-agent
(HA) models with complete information 3. This paper extends the application of this
approach to the case of incomplete information. I restrict the information structure to
be Gaussian.

Assumption 1. The state s and the signal ωik are normally distributed as follows:

s ∼ N (0, σ2
s ), ωik = s + uik,s, uik,s ∼ N (0, σ2

is)

For this information structure, the asymmetry in information frictions is captured by
the differing variances of the noise terms σ2

is across industries. To apply the perturbation
approach, consider a sequence of economies indexed by a perturbation parameter δ that
scales the size of the shocks and noises:

s(δ) = δs; uik,s(δ) = uik,sδ (13)

The economy with δ = 1 corresponds to the economy to be approximated. When δ

converges to 0, the sequence of economies converges to a deterministic economy with-
out shocks, which can be solved easily. Equilibrium objects are approximated through
a Taylor expansion with respect to δ over the sequence of economies. In the expansion
of the tax function with respect to δ, when δ is small, the first-order effect dominates.
The first-order expansion of the policy functions consists of two parts: the derivative
with respect to the shock δs and the derivative with respect to the scalar δ (the scale of
variance of shocks & noises). Due to certainty equivalence, the second component is

3As previously discussed, the complete information here does not necessarily rule out the uncer-
tainty of the fundamental, but it does rule out the uncertainty of the economy’s information set.
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zero4, so the tax functions are approximated as linear functions of the shock s:

τC
i (δs; δ) ≈ τ̄C

i +
∂τC

i
∂s
∣∣
δ=0δs +

∂τC
i

∂δ︸︷︷︸
= 0 (CE)

δ; τ Ind
i (δs; δ) = τ̄ind

i︸︷︷︸
= 0 (PE)

+
∂τ Ind

i
∂s

∣∣
δ=0δs +

∂τ Ind
i

∂δ︸ ︷︷ ︸
= 0 (CE)

δ

where τ̄C
i and τ̄ Ind

i are consumption goods and revenue tax rates in the no-shock
economy. For the production efficiency result, we know τ̄ Ind

i = 0 and τ̄C
i are equalized.

The expansion of government spending shock and industrial productivity shocks with
respect to δ is given by:

log G(δs) ≈ log Ḡ +
1
Ḡ

∂G
∂s
∣∣
δ=0δs︸ ︷︷ ︸

∂G

; log Zi(δs) ≈ log Z̄i +
1
Z̄i

∂Zi

∂s
∣∣
δ=0δs︸ ︷︷ ︸

∂Z

where ∂G and ∂Z represent the percentage changes of the government spending
shock and the industrial productivity shocks, respectively. I set up a list of useful no-
tations before I go to the main theorem. For the information friction, the vector λ mea-
sures the precision of information across industries, where the i-th element λi is defined

as σ−2
is

σ−2
s +σ−2

is
. This expression serves as the signal-to-noise ratio, reflecting the accuracy of

the signal for each industry. The value of λi ranges from 0 to 1: 0 indicates no informa-
tion (σ2

is → ∞), while 1 indicates perfect information (σ2
is = 0). For the entire economy, I

define the average precision λ̄ as follows:

λ̄ ≡ ∑N
k=1 αkDkλk

∑N
k=1 αkDk

which is a weighted average of precision across industries, where αk is the labor share
and Dk is the Domar weight of industry k. The weight αiDi

∑N
k=1 αkDk

is associated with the
ratio of the tax revenue from industry i (by using consumption good tax) in the no-
shock equilibrium. I measure the difference in information frictions as λ̂ ≡ λ − λ̄,
which reflects the deviation of each industry’s precision from the average precision. In
the production network, α is defined as:

4For higher-order approximations, the derivative with respect to δ is not zero
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α ≡


a1 0 · · · 0
0 a2 · · · 0
...

... . . . ...
0 0 · · · aN

 (14)

where the diagonal elements α1 to αN denote the output elasticity of labor for each
industry. A is the matrix of aij, called the input reliance matrix, where each row repre-
sents the share of intermediate goods used in producing the output of each industry. R

is the matrix of Rij ≡
X̄ji

∑N
k=1 X̄ki

, referred to as the output allocation matrix, where each
row shows the proportion of its output used as intermediate goods by other industries
relative to its total use of intermediate goods. These fractions are computed in the de-
terministic economy when δ = 0.

The vector β represents the shares of consumption goods from each industry. D is
the vector of Domar weights Di ≡ piyi

PY , also evaluated in the steady state without shocks.

Theorem 2 (Asymmetric Information). (1) The optimal industry revenue tax τ Ind is given
by

τ Ind(s) = −(χZDT∂Z + χG∂G)(I − R)(I − ε + λ̄

ε
α−1(I − AR))−1λ̂

(2) The optimal consumption goods tax τC is given by:

τC(s) = τ̄Ce − (χZDT∂Z + χG∂G)R(I − ε + λ̄

ε
α−1(I − AR))−1λ̂.

where χi := χi(σ, ε, λ̄, Ḡ, Ȳ) and τ̄C := τ̄C(σ, ε, δs, λ̄, Ḡ, Ȳ, λ̂) are constants and satisfy:
χZ > 0 and χG < 0, and e is a vector of ones.

Proof. Please see the appendix A.

I have a very simple formula for the tax function of industrial revenue and con-
sumption goods. The last term reflects the variation in information precision. Un-
der symmetric information, this vector becomes 0, which directly confirms Proposition
2 within this information structure, where all revenue taxes are zero, and consump-
tion taxes are uniform. The product of matrix (I − R)(I − ε+λ̄

ε α−1(I − AR))−1 and
R(I − ε+λ̄

ε α−1(I − AR))−1 capture how the interaction of difference of precision and
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production networks affects the optimal taxation. This interaction is closely related
to the input reliance matrix A and output allocation matrix R I formerly define. The
roles of the matrices (I − R) for the revenue tax and R for the consumption goods

tax, along with
(

I − ε+λ̄
ε α−1(I − AR)

)−1
, will be discussed separately using examples

later. (χZDT∂Z + χG∂G) is just a scalar which captures the response efficiency from the
shocks to the tax rates. Here χZ is the response efficiency for productivity shock DT∂Z
which is positive and χG is the response efficiency for government spending shock ∂G
which is negative. These response efficiency parameters are related to the no-shock ratio
of government spending, the average information precision, and the preference param-
eters. As ∂Z is the vector of industrial productivity shock, the product DT∂Z can be
directly treated as the aggregate TFP shock. By using the Hulten theorem (Hulten, 1978;
Baqaee and Farhi, 2019) , we know marginally how much industrial productivity affects
the aggregate TFP is associated with its Domar weight.

Unlike the symmetric information case, when information is asymmetric, it’s im-
mediate that the tax rate on intermediate goods are non-zero, and the tax rate for final
consumption goods are not equalized, and they are shaped by the interaction of pro-
duction networks and information frictions. To explain this mechanism in detail, I refer
to the examples below:

4.1 A Motivation Example:

I first study a two-sector vertical structure network (see graph a in Figure 1). I let indus-
try 1 be the downstream industry and industry 2 be the upstream. From the theorem,
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the optimal taxes are 5

τ Ind = (χZDT∂Z + χG∂G)
ε

λ̄

(
1 0
−1 1

)(
λ̂1

λ̂2

)
(15)

τC = τ̄Ce + (χZDT∂Z + χG∂G)
ε

λ̄

(
0 0
0 −1

)(
λ̂1

λ̂2

)
(16)

where λ̂1 = λ1 − λ̄ and λ̂2 = λ2 − λ̄ and they take opposite signs. Focusing on
the scenario of a positive government spending shock ∂G > 0. Consider the first case
where the downstream industry has less information about the government spending
shock than the upstream. According to equations (15)(16), for the revenue tax, the plan-
ner should tax the downstream industry 1 and subsidize the upstream industry 2, and
for the consumption good tax, the planner should comparatively increase the tax rates
for the upstream industry as λ̂1 < 0 < λ̂2 and χG < 0. The rationale is that when
the upstream industry is less informed about government spending, it is also less in-
formed about the future tax rate. As a result, an increase in revenue tax rates for the
downstream leads to a relatively inelastic decrease in labor supply compared to the up-
stream industry. Therefore, the government primarily taxes the downstream industry
to raise additional revenue as it distorts labor less. This rationale aligns with the litera-
ture, which emphasizes that factors that are either inelastically demanded or supplied
should be taxed more heavily (Ramsey, 1927; Chari and Kehoe, 1999; Stiglitz and Ram-
sey, 2015). The inelasticity here doesn’t originate from the supply or demand curves
but instead results from information frictions in the market. However, increasing the
tax rate on the downstream industry alone is not optimal as it would reduce demand
for downstream goods at the second stage of production. Unlike the downstream firms,
the upstream firms know more precisely that the government spending would go up,
and in this sense, they know more precisely that the upstream would be taxed more
heavily for their revenue, which reduces the demand for their product. Thus, the wedge
created by the revenue tax is passed on to the upstream industry, and it would distort

5Mathematically, when ∑N
k=1 X̄ki = 0 for some i, Rij =

X̄ji

∑N
k=1 X̄ki

is not good determined. This is the

case when one or some industry goods are used only as consumption goods. In that case, the consump-
tion goods tax and revenue tax are isomorphic. Since one tax instrument is redundant for those indus-
tries, there can be infinite ways of taxation to achieve the optimal equilibrium for the Ramsey planner.
This pattern does not affect the validity of my theorem. τ Ind + τC perfectly cancels the term associ-
ated with matrix R. So I can always set matrix R by letting Rij to be 0 if it is associated with ∑N

k=1 X̄ki=0.
The expression for my theorem still gives the optimal taxation even though the optimal taxation is not
unique.
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labor more heavily as they have more precise information. To offset this distortion, the
government simultaneously subsidizes the upstream industry. In summary, the down-
stream taxation is justified by the inelasticity caused by information frictions, while the
upstream subsidy arises from input-output linkages in the production network. 6

In the second stage, when all tax rates are realized, if the upstream product is also
used as input for consumption goods, positive revenue taxes for the downstream in-
dustry 1 would cause the allocation inefficiency as more upstream goods would be allo-
cated to the final consumption good sector instead of the upstream industry. Thus, the
Ramsey planner also increases the consumption tax for the upstream industry.

Conversely, when the upstream industry is less informed about government spend-
ing, I have λ̂1 > 0 > λ̂2. For the positive government spending shock, the govern-
ment should tax the revenue of the upstream firms as their labor is more inelastic to the
change of the tax rate. At the same time, the government subsidizes the downstream
industry7 and reduce the consumption tax for the downstream industry.

4.2 More General Cases:

Cases I: Tree Network:

Definition 2. The production network is said to be a Tree network if every industry has at most
one direct downstream industry.

6The alternative way to understand this is directly looking at the first order conditions for the two
sector vertical structure without using perturbation. Assuming that β1 = 1 (only the downstream goods
are used as consumption goods), I have

L1(s) = Eω1j |s

[
(Es′ |ω1j

[
1 − τ Ind

1 (s′)
1 + τC

1 (s′)
a1(

L2(s′)
L1(s′)

)1−a1 ])
1
ε

]

L2(s) = Eω2j |s

[
(Es′ |ω2j

[
(1 − τ Ind

1 (s′))(1 − τ Ind
2 (s′))

(1 + τC
1 (s′))

(1 − a1)(
L1(s′)
L2(s′)

)a1 ])
1
ε

]

The wedge on the downstream is only associated with the revenue tax rates on industry 1 while the
wedge on the upstream is associated with revenue tax rates on both industries. Moreover, the wedge

is not 1−τ Ind
1 (s)

1+τC
1 (s)

for upstream and (1−τ Ind
1 (s))(1−τ Ind

2 (s))
(1+τC

1 (s))
for downstream at state s. Instead, it is associated

with Eω1j |s

[
Es′ |ω1j

[
1−τ Ind

1 (s′)
1+τC

1 (s′)
]

]
and Eω2j |s

[
Es′ |ω2j

[
(1−τ Ind

1 (s′))(1−τ Ind
2 (s′))

(1+τC
1 (s′))

]

]
which shows how the wedges are

affected by the information frictions for each industry.
7The government can also keep the revenue tax rate for the downstream industry to be the same

as the upstream revenue tax does not distort the downstream labor supply. As discussed formerly, the
revenue tax and consumption good tax for the downstream here is isomorphic, and there is an infinite
way of taxation for the downstream to achieve the optimal equilibrium for the Ramsey planner.
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The tree network applies for all examples in figure 1 including two sector vertical
structure model as I discussed, and even an around-about production as graph c:

Household HouseholdHousehold
b ca

Figure 1: Tree Networks: examples

If the production network is a Tree network, I can simplify the bracket of the matrix
in the theorem:

(I − ε + λ̄

ε
α−1(I − AR))−1 = − ε

λ̄
I (17)

Therefore, the optimal tax rates become

τ Ind =
ε

λ̄
(χZDT∂Z + χG∂G)(I − R)λ̂ (18)

τC = ¯̄τCe +
ε

λ̄
(χZDT∂Z + χG∂G)Rλ̂ (19)

Based on equations (18) and (19), the optimal taxation follows this pattern: given
a positive government spending shock (or negative productivity shock), if industry i
reduces its information precision, the government should increase the revenue tax on
industry i. It should reduce the revenue tax on industry j if and only if j is the direct
upstream of industry i. For the consumption goods tax, the government should increase
the tax for these direct upstream industries of industry i.

The reasoning is similar to the two-sector model: when one industry becomes less
informed, the revenue tax increases for that industry; at the same time, the revenue taxes
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are reduced for its upstream industries to eliminate further labor distortions in those
industries, as well as in the industries upstream of these upstream industries, and this
process continues along the production chain, affecting all connected industries. The
consumption taxes of the direct upstream industries increase to remove the distortion
of intermediate goods in the second stage. This pattern generalizes the findings from
the two-sector vertical structure model into a more general production network, and it
has been captured by the matrix (I − R) for the expression of the revenue tax and R for
the expression of consumption good tax.

Cases II: Multiple Downstreams

Household

Figure 2: Multiple Downstream

To explain the role of the matrix (I − ε+λ̄
ε α−1(I − AR))−1 in the theorem, I consider

a simple production network with single upstream and multiple downstream indus-
tries shown in Figure 2. The input reliance matrix and output allocation matrix for this
production network are given by:

A =



0 · · · 0 a1N

0 · · · 0 a2N
... . . . ...

...
0 · · · 0 aN−1,N

0 · · · 0 0


; R =


0 · · · 0 0
... . . . ...

...
0 · · · 0 0
b1 · · · bN−1 0

 (20)

20



where

bi =
βiaiN

∑N−1
k=1 βkakN

I have the following proposition:

Proposition 3. For a positive government spending shock or a negative productivity shock s,
if industry i ∈ {1, · · · , N − 1} reduces its precision ∆λi < 0 about s, then the change of the
optimal taxation follows
(1) ∆τ Ind

i > ∆τ Ind
j > 0, ∀j ∈ {1, · · · , N − 1};

(2) |∆τ Ind
j | ⋛ |∆τ Ind

k | iff ajN ⋛ akN, ∀j, k ̸= i;
(2) ∆τ Ind

N = −∑N−1
k=1 bk∆τ Ind

k .

Unlike the previous case, the revenue tax increases for all downstream industries
from 1 to N − 1. If industry j relies more heavily on upstream industry N than industry
k, the tax increase for industry j should be greater than that for industry k. The upstream
industry N should be subsidized more (taxed less), with its tax reduction being the
weighted average of the tax increases for all its downstream industries. The weight
of industry i is proportional to its consumption share βi and its input reliance aiN on
upstream industry N.

The reason is as follows: if industry i reduces its precision of information, it should
be taxed more, and its upstream industry N should be subsidized more. However, sim-
ply replicating this tax strategy will no longer be optimal. Raising the tax on industry
i alone distorts the allocation of intermediate goods for upstream industry N, which
has multiple downstream paths to consumption goods. In simpler cases, when the
upstream industry has at most one downstream industry, adjusting the consumption
goods tax would be sufficient to remove distortions of products used for intermediate
goods and used for the consumption goods. However, with multiple downstream in-
dustries, this would not possible. Therefore, the Ramsey planner must raise the revenue
tax for all downstream industries.

Yet, when the revenue tax for industry j (j ̸= i) increases, labor in industry j is further
distorted because the information precision for that industry remains unchanged. This
creates a trade-off between labor distortions in the first stage and intermediate goods
allocation distortions in the second stage. Consequently, the tax increase for the other
downstream industries should be smaller than for industry i as their precision doesn’t
change but is still greater than zero to reduce the distortion of allocation.
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The degree to which an industry’s revenue tax rate increases depends on its reliance
on upstream inputs. If industry j relies more heavily on the upstream compared with
another industry k, we want to tax it more because it is associated with a larger share
of intermediate goods and a smaller share of labor input. Thus, increasing its tax rate
greatly reduces the distortion of intermediate goods for its upstream industry N without
intriguing a large distortion of labor supply in industry j. This rationale gives us the
second result.

For the last property, the increase in the subsidy for the upstream industry serves to
counteract the labor distortion caused by the tax increase on its downstream industries.
The weight bi represents the fraction of labor in the industry N used to produce inter-
mediate goods i, relative to the total labor used for all intermediate goods production.
So, this weighted average gives the optimal subsidy needed to fully correct the labor
distortion in the upstream industry (given that there are multiple paths it goes to the
final consumption good).

To understand how it relates to (I − ε+λ̄
ε α−1(I − AR))−1, we can think about the

“expansion” of the matrix as I + M + M2 + ... where M ≡ ε+λ̄
ε α−1(I − AR). The tax

changes for other industries are primarily influenced by α−1AR. Since α is diagonal, the
critical component is AR. When multiplied by the difference in information precision,
ARλ̂, the term Rλ̂ indicates that taxes are adjusted for downstream industries if their
upstream industry’s information precision differs from the average. Then ARλ̂ sug-
gests taxing the upstream industries of these downstream sectors to correct intermediate
goods distortions. Thus, I + M captures the process as the previous discussion: the gov-
ernment first taxes the industry that has less information, subsidizes the downstream,
then realizes it is not optimal and adjusts the tax for the upstream of these downstream.
The process does not end here, as once the taxes of those upstream go up, the govern-
ment needs to adjust the subsidy for the new downstream industries of them and then
revise the tax rate for the new upstream of these new downstream again. This iterative

process continues as the expansion of the inverse matrix
(

I − ε+λ̄
ε α−1(I − AR)

)−1
. In

summary, the role of the second matrix
(

I − ε+λ̄
ε α−1(I − AR)

)−1
is to address inter-

mediate goods distortions in the second stage, while the first matrix (I − R) or R is to
address labor distortions in the first stage.

Cases III: Most Upstream Industry

Proposition 4. If industry i only uses labor as input, and its precision increases by ∆λi > 0,
22



the optimal tax should change correspondingly as

∆τ Ind
j = 0, ∀j ̸= i; ∆τC

j = ∆τC
i > 0, ∀i, j (21)

Household

Figure 3

Proof. Without loss of generality, let’s assume that industry N only uses labor as input.
The input-output matrices are

A =



a1,1 a1,2 · · · a1,N

a2,1 a2,2 · · · a2,N
...

... . . . ...
aN−1,1 aN−1,2 · · · aN−1,N

0 0 · · · 0


; R =


r1,1 r1,2 · · · r1,N−1 0
r2,1 r2,2 · · · r2,N−1 0

...
... . . . ... 0

rN,1 rN,2 · · · rN,N−1 0



Then I can rewrite (I − ε+λ̄
ε α−1(I − AR)) in block matrix as

I − ε + λ̄

ε
α−1(I − AR) =

(
M(N−1)×(N−1) 0(N−1)×1

01×(N−1) m1×1

)

The inverse of the matrix becomes
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(I − ε + λ̄

ε
α−1(I − AR))−1 =

(
M−1

(N−1)×(N−1) 0(N−1)×1

01×(N−1) m−1
1×1

)

By substituting it into our theorem, I have

(I − R)(I − ε + λ̄

ε
α−1(I − AR))−1


0
...

∆λN

 =


0
...

m−1
1×1∆λN



R(I − ε + λ̄

ε
α−1(I − AR))−1


0
...

∆λN

 = 0

which establishes this result.

When the industry is the most upstream and its precision changes, only the revenue
tax for that industry is affected. This is because the tax on the most upstream industry
does not pass through to distort the downstream industries. Additionally, the consump-
tion tax changes uniformly across all industries.

4.3 Discussion and Extension

According to the analysis for the static model, the optimal taxation for the economy can
be summarized by the following three principles: the industry should be taxed for its
revenue if (i) it has greater information rigidity, (ii) its upstream industries have smaller
information rigidity, and (iii) its input goods are also used by less informed industries in
recession (or when government expenditure goes up). The consumption tax changes the
opposite way of the revenue tax to remove the distortion between consumption goods
and intermediate goods.

I also extend the framework into a dynamic setting with an infinite horizon where
the government uses government bonds and state-contingent assets to smooth the tax
revenue, shocks are persistent, and agents receive a history of signals to predict the
underlying state. The main lesson holds. For proposition 1, when the information is
symmetric, consumption tax rates are the same across industries, and the revenue tax
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rates are all zeros. The difference is that the consumption tax rates are not constant
across time. The reason is that it is optimal to tax the agents when they collectively
have less information as it causes less distortion of their labor input than when they
understand the shocks. The theorem 1 also holds for the asymmetric information, except
that the precision parameter λi is not the simple signal-to-noise ratio. Instead, it is the
function of the sequence of Kalman gains. See the appendix for the details.
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5 Quantitative

To quantitatively apply the theorem, I have to calibrate the information rigidity for dif-
ferent industries. This is completed by using two steps. In the first step, I use the
text analysis to construct the attention index for different industries following Song and
Stern (2024). In step 2, I construct the mapping from the attention index to information
frictions.

5.1 Text-Based Measure

To analyze how different industries pay attention to various economic topics, I use a
dictionary-based approach that counts the frequency of keywords associated with each
topic. These keywords, which are detailed in the appendix, are primarily selected based
on their frequency in Econoday. Econoday is a well-known service that provides noti-
fications on major economic events and is also the source for the Bloomberg Economic
Calendar. According to the model’s first-order perturbation, aggregate output is a linear
function of productivity. Thus, to capture the attention directed towards TFP shocks, I
compute an industry’s attention to output. The output-related topic is defined using six
keywords: GDP, economic growth, macroeconomic conditions, construction spending,
national activity, and recession.

Data for US: I use electronically available 10-Q filings from publicly listed U.S. compa-
nies, as required by the Securities and Exchange Commission (SEC), covering the period
from 1994 to 2023. These quarterly filings, mandated under Regulation S-K, include au-
dited financial statements and descriptions of business conditions. As illustrated in
Figure A1, the content of Apple’s 10-Q filings provides an example of such disclosures.
For each firm j in industry i at time period t, the firm is marked as attentive to a specific
topic s if any keywords associated with that topic are mentioned in its 10-Q filing. In
such cases, the dummy variable dijst is assigned a value of 1; otherwise, it is set to 0.
This can be represented as follows:

dijst = 1(Total topic-s words > 0) (22)

The attention index for industry i at time t for topic s is then calculated as the average
of dijst values for all firms in that industry:
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Attentionist =
∑Nit

j=1 dijst

Nit
(23)

where Nit denotes the total number of firms in industry i at time t. Consequently,
the attention index for industry i represents the proportion of firms that are attentive to
topic s during period t.

Data for China: In contrast, for Chinese industries, an equivalent database of quarterly
filings does not exist. Therefore, I rely on the annual reports of firms listed on the Shang-
hai Stock Exchange (SSE) and Shenzhen Stock Exchange (SZSE) between 2001 and 2022.
The attention index for these firms is constructed using the same approach as that for
the U.S., based on the frequency of keywords appearing in these reports.

Figure 1 shows the attention index for various topics, revealing heterogeneity across
industries. Attention to output differs across industries in both China and the U.S. Both
countries show little attention to government spending, while firms in China pay sig-
nificantly more attention to fiscal policy compared to those in the U.S. Fiscal policy
is associated with government grants and subsidies, which is consistent with the fact
that Chinese firms often rely on government support for development. Additionally,
Chinese firms show greater attention to input-output linkages, though this attention
remains heterogeneous across industries 8.

To examine whether asymmetric attention holds over time, I calculate the average
attention index over 5-year epochs, except for the shorter periods of 2020–2023 for the
U.S. and 2021–2022 for China. Figure 2 displays the attention to output across different
epochs for both countries. The top graph shows the U.S. data, while the bottom graph
shows the data for China.

The results indicate that certain industries consistently exhibit higher attention to
output. This pattern reveals a persistent asymmetry in attention. In the U.S., sectors
such as FIRE, construction, manufacturing, and services exhibit greater attention on
output, while industries like agriculture, mining, and wholesale trade exhibit lower
levels of attention. Similarly, in China, finance and construction industries are generally
more attentive to output than industries such as mining and agriculture.

8Attention to production refers to whether a firm is concerned with its intermediate inputs from
upstream or demand from downstream, without specifying the industries involved. Fang et al. (2024)
analyze firms’ attention allocation across all industries within the production networks.
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Figure 1: The heatmap of attention

Notes: The attention index is constructed based on the 10-Q filings of all publicly listed companies in the

U.S. from 1994Q1 to 2023Q4, and the annual reports of all listed firms on the Shanghai Stock Exchange

(SSE) and Shenzhen Stock Exchange (SZSE) in China from 2001 to 2022. U.S. industries are classified

using the two-digit NAICS system, and Chinese industries follow the standards defined by the National

Bureau of Statistics of China.
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Figure 2: Industry Attention Over Time

Notes: The attention index is constructed by averaging quarterly attention values over specified ranges

of year.

To check whether the constructed attention index is a good proxy for information
frictions, I conduct regressions on both forecast error and forecast dispersion. I use
data from the Survey of Professional Forecasters (SPF). In particular, I use the dataset
of individual forecasters, focusing exclusively on those from the finance sector 9. The
forecast error is defined as the difference between the forecasted and actual real GDP
values: forecast errori,t = Ei,t[rGDPt] − rGDPt. I use the standard deviation of the

9In the SPF, the variable industry takes a value of 1, 2, or 3, indicating the forecaster is from the fi-
nance sector, non-financial sector, or unknown, respectively. I only use forecasters who are identified as
being in the finance industry.
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forecast errors for all forecasters in each period to capture the information dispersion.

|forecast errori,t| = γ0 + γ1Attentiont + Xt + εi,t

SD(|forecast errori,t|)t = γ0 + γ1Attentiont + Xt + εi,t

For the regression, I include the control variable NBER recession to account for po-
tential increases in forecast error and dispersion during recessions. NBER recession is
set to 1 during recession periods and 0 otherwise. 10.

|Forecast Error| SD(|Forecast Error|)
(1) (2) (1) (2)

Attention -0.0182* -0.0209** -0.0432*** -0.0457***
(0.00949) (0.00957) (0.0165) (0.0166)

NBER Recession 0.00625** 0.00632
(0.00311) (0.00580)

Constant 0.0184*** 0.0180*** 0.0210*** 0.0206***
(0.00191) (0.00191) (0.00333) (0.00335)

Table 1: How attention affects the forecast error and dispersion

Table 1 shows that increased attention reduces both forecast error and dispersion.
This pattern aligns with the model and validates the attention index I constructed as
a proxy for information uncertainty within the industry. The negative coefficients for
the NBER shock, both for forecast error and dispersion, suggest that uncertainty does
increase in recession if attention remains unchanged. This outcome may result from
larger volatility in aggregate TFP or increased subjective uncertainty during economic
downturns (Chiang, 2023; Flynn and Sastry, 2024).

What drives asymmetric attention across industries? Table 3 shows that an indus-
try’s attention to output is positively associated with its exposure to business cycle
shocks. Industry exposure to these shocks is measured by the correlation between the
growth rate of industry output and the growth rate of GDP, using data from the Bureau

10According to the SPF classification, financial service providers encompass institutions in sectors
such as insurance, investment and commercial banking, payment services, hedge funds, mutual funds,
associations within financial services, and asset management. To align with the attention index con-
structed based on the two-digit NAICS system, I set the attention index to reflect the Finance, Insurance,
and Real Estate (FIRE) industry.
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of Economic Analysis from 1997 to 2023.11 12

Figure 3: Exposure and attention

Note: The exposures to business shocks are computed using the correlation of the detrended growth
rate of industry output and GDP growth. The left figure uses the HP filter, and the right applies a 3-year
moving average. The attention is computed by taking the average of the attention index from 1997 to
2023. The industry is specified by the 3-digit NAICS system.

5.2 Regression: from attention to precision

In this section, I map the attention index into information precision. To eliminate the
scale effect, I use the growth rate of real GDP instead of the level of real GDP. The
forecasted growth rate of real GDP for period t+ h by individual i in industry j at period
t is defined as:

Ei,j,t[gt+h] =
Ei,j,t[rGDPt+h]

Ei,j,t[rGDPt+h−1]
− 1 (24)

where forecast data is obtained from the SPF. To restrict the forecasters to be in a
single industry, I only include those who are in the financial sector. When the informa-
tion structure is Gaussian, forecaster i in industry j updates their forecast based on the

11Growth rates are detrended using either an HP filter or a 3-year moving average.
12In the appendix, I use an alternative measure of exposure to shocks by examining the correlation

between an industry’s TFP and labor productivity with the aggregate TFP and labor productivity.
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history of signals. This update in the static model follows the Kalman filter:

Ei,j,t[gt] =
(

1 − λ
private
j,t

)
Ei,j,t−1[gt] + λ

private
j,t x̂private

i,j,t (25)

where λ
private
j,t is the Kalman gain of the private signal and x̂private

i,j,t is the innovation term

based on the signal received at period t. The Kalman gain λ
private
j,t is specific to both

the industry j and the time period t. Here, I restrict attention to the private signal and
set the forecast horizon to the current period. For a more general information structure
that incorporates public signals, see the appendix, where the model is extended to a
dynamic setting. For any forecaster i, the innovation term x̂private

i,j,t is uncorrelated with
his previous forecast Ei,j,t−1[gt]: he extracts only the component of the new signal that
is orthogonal to all previously received ones.

I impose the key assumption: the Kalman gain of the private signal λ
private
j,t has an

affine relationship to the attention of industry j at period t:

λ
private
j,t = β0 + β1 ∗ Attentionj,t (26)

The assumption of this affine relationship is employed by Bui et al. (2024) to de-
termine the precision of public signals from the intensity of news coverage. I use this
assumption to map attention into precision. Then the remaining step is to get parame-
ters β0 and β1.

Equation (25) implies

Ēj,t[gt] = (1 − λ
private
j,t )Ēj,t−1[gt] + λ

private
j,t x̄private

j,t (27)

where the average forecast of the industry is updated in the same way. Combining with
(25) and (27), I have

Ei,j,t[gt]− Ēj,t[gt]︸ ︷︷ ︸
Forecast Difference at Period t

= (1 − λ
private
j,t )( Ei,j,t−1[gt]− Ēj,t−1[gt]︸ ︷︷ ︸

Forecast Difference at Period t − 1

) + errori,j,t (28)

where the errori,j,t is given by the difference of innovation x̂private
i,j,t − x̄private

j,t , and it is
uncorrelated with the past forecast Ei,j,t−1[gt] and Ēj,t−1[gt].
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Substituting (26) into (28), I have

Ei,j,t[gt]− Ēj,t[gt]︸ ︷︷ ︸
Forecast Difference at Period t

= (1 − β0)( Ei,j,t−1[gt]− Ēj,t−1[gt]︸ ︷︷ ︸
Forecast Difference at Period t − 1

)

+β1( Ēj,t−1[gt]− Ei,j,t−1[gt]︸ ︷︷ ︸
Forecast Difference at Period t − 1

) ∗ Attentionj,t + errori,j,t (29)

The regression equation (29) uses the forecast difference between individuals and
the mean as both the dependent and independent variables. This approach follows
Goldstein (2023), with the distinction that the Kalman gain is not constant but varies
over time for different levels of attention. This approach allows me to use the individual
data to get the estimation of β0 and β1.

Alternatively by substituting (26) into (25), I have

Ei,j,t[gt]− Ei,j,t−1[gt]︸ ︷︷ ︸
Forecast Revision at Period t

=

−β0Ei,j,t−1[gt]− β1Ei,j,t−1[gt] ∗ Attentionj,t + errori,j,t (30)

This gives me an alternative regression model to estimate the key parameters β0 and
β1. Once I have their values, I can back out the precision of any other industry j at
period t by using affine relationship (26).

Table 2 shows the regression results. The results indicate that greater attention is as-
sociated with higher precision. I refer to the first regression model of forecast difference
for the baseline calibration. The quantitative analysis focuses on the COVID-19 shock,
and I verify that the precision values for all industries lie within the range of 0 to 1 after
2019.
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(1) (2)
Forecast Difference Forecast Revision

β1 0.361*** 0.444**
(0.142) (0.204)

β0 0.0751
(0.0535)

1 − β0 0.289***
(0.0763)

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 2: The estimation of β0 and β1

Note: The first column presents the results for regression (29), using the difference between the mean
forecast and individual forecasts as the dependent and independent variable. The second column shows
the results for regression (30), with forecast revisions as the dependent variable.

5.3 Calibration:

To calibrate input-output linkages in the model, I use the input-out data from the Asian
Development Bank (ABD) for China and the U.S. Bureau of Economic Analysis (BEA)
for the United States. The calibration for both countries is shown in the table below:

U.S. China

Param. Value Source Related to Value Source Related to

σ−1 2 — IES 2 — IES
ε 1.0 — Frisch 1.0 — Frisch
βi BEA consumption share ADB consumption share
αi BEA labor share ADB labor share
aij BEA input-output matrix ADB input-output matrix
Rij BEA input-output matrix ADB input-output matrix
Ḡ
Ȳ 0.365 IMF Spending-to-GDP 0.354 IMF Spending-to-GDP
Attentioni — 10-Q attention index — annual report attention index

β0 0.361 regression info precision 0.667 regression info precision
β1 0.611 regression info precision 0.410 regression info precision

Table 3: Calibrated Parameters

For preference, I set σ−1 = 2 and ε = 1.0. I treat the year 2019 before the COVID-
19 shock as the steady state for the model. Thus I refer to the input-out table data for
both countries at 2019. The steady-state government spending ratio G

Y is set at 0.3679
for the U.S. and 0.3679 for China using data from the IMF’s Public Finances in Modern
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History Database at 2019. aij is computed by the share of intermediate goods to produce
the output. Since the model uses only labor, αi is computed by 1 − ∑N

j=1 aij to ensure
that the production function is a constant return to scale. Rij is computed by using
the nominal cost of each industry to buy intermediate goods i 13. βi is computed by
using both household consumption and government consumption. I first calculate its
consumption by households and the government and then compute the share of each
industry relative to the total consumption across all industries. The attention index
Attentioni is from the text analysis. For China, it is constructed by an annual report of
all SSE and SZSE listed firms at 2020. For the United States, it is constructed by taking
an average of the quarterly attention index at year 2020 by using the 10-Q fillings. β0

and β1 are from the regression14.
The input reliance matrix A, the output allocation matrix R, and the diagonal ma-

trix of labor share α can be directly computed from the calibration. The information
provision can be computed by using equation (26). For the Covid-19 shock, I set a 5
% negative TFP shock for the quantitative exercises for both countries. This level is
modest. Bloom et al. (2023) find total factor productivity (TFP) fell by up to 6% dur-
ing 2020-21 for U.S. The NBS of China estimates that China’s GDP contracted by 6.8%
year-on-year in the first quarter of 2020 due to the impact of the pandemic. This exer-
cise applies when there is a uniform 5% decline in industrial productivity. It also holds
when the decline is not uniform across industries, as long as DTz = 5%, in accordance
with the theorem.

5.4 Quantitative results:

I compute the optimal tax rates in this section. To decompose the effect of produc-
tion networks, I consider two counterfactual exercises: (i) the self-contained production
where I assume each industry produces without using intermediate goods from other
industries (αi is kept the same but it could use its own goods as input); (ii) the symmet-
ric input-output structure where each industry depend equally on the rest industries (αi

is kept the same but aij is set to be equalized across j).
Figure 4 - Figure 7 shows the optimal taxation of both industrial revenue tax and

consumption goods for both countries. Firstly, we know when information is sym-

13For the model, Rij is for the real good allocation. I assume that all industries pay the same price pi
to purchase industry good i, so I can directly use the nominal cost of each industry to buy intermediate
good i to compute Rij.

14see the appendix for the calibration of β0 and β1 for China
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metric, all the revenue tax lies on the x-axis (the production efficiency result). The red
bars show optimal tax rates by using the 2019 input-output table as calibration for the
network. The green and blue bars show the optimal tax rates for the counterfactual
analysis. The consumption goods tax changes dramatically when the production net-
work is self-contained. At the same time, the revenue tax is all zeros. 15. The reason is
as follows. When production networks are self-contained, there is no interconnection
between industries. Then, the optimal taxation seems to tax the industry with less in-
formation about the shock as its labor is more inelastic to the taxation. However, the
government should strictly prefer the consumption goods tax to the revenue tax be-
cause it does not distort the allocation of output for use as intermediate goods for its
own industry or input for consumption goods. However, revenue tax does distort this
allocation: if one firm supplies its goods to another firm in the same industry, if the
downstream firm is taxed on its revenue, it reduces its demand for the supplier’s goods
and leads to a less-than-optimal allocation of products to the downstream firm. In this
counterfactual scenario, production networks fundamentally alter the optimal taxation:
compared to the actual input-output relationships, if each industry were to rely solely
on its product as input, the government would shift from taxing industrial revenue to
taxing consumption goods instead 16.

15The self-contained network is exactly a special case for the ’Tree’ networks I specify in the exam-
ples. The industry has, at most, one upstream industry, which turns out to be itself. I prove that the
optimal taxation for the tree network is to subsidize (tax) the industry, which has different precision,
and at the same time tax (subsidize) its direct downstream to the same level. Here, both the industry
and the downstream of the industry is the industry itself. The tax and subsidy cancel each other. So the
revenue remains the same. But for the consumption good tax in the Tree network, for the downstream
of that industry (this is again the industry itself), it changes to remove the distortion between its used as
intermediate good and as consumption input.

16To the extreme case, if all goods are used for consumption and there are no intermediate goods, the
self-contained scenario goes back the standard horizontal structure where consumption good tax and
industry revenue tax are isomorphic: one of them is redundant.
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Figure 4: Optimal Industrial Revenue Tax: U.S.

Figure 5: Optimal Consumption Good Tax: U.S.

The optimal taxation for the U.S. (red bar) is non-zero for the Covid-19 shock, but
their values are modest. The tax rates of wholesale and retail trade, manufacturing and
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services are all close to zeros. The government should slightly subsidize FIRE and con-
struction while shifting its tax burden on the agriculture and mining industries. 17 For
the second counterfactual, when networks are symmetric across industries, the abso-
lute tax rates mostly go up, but it does not change the sign of tax rates. The reason is
that in accurate input-output linkage, the agriculture and mining industries rely greatly
on intermediate goods from the manufacturing industry. Those two industries pay less
attention to the output than construction, which also relies on the intermediate goods
from manufacturing to production. Thus, more significant tax differences between those
industries will cause an extraordinary misallocation of intermediate goods from man-
ufacturing in the accurate input-output linkage. In the end, the optimal taxation takes
smaller absolute values.

Figure 6: Optimal Industrial Revenue Tax: China

17I don’t consider inequality here but it remains an interesting extension of this model.
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Figure 7: Optimal Consumption Good Tax: China

The optimal taxation for China is also non-zero for the Covid-19 shock, and the tax
burden should be set on Agriculture, Utilities, Transport and Postal, Public Adminis-
tration and Social Services, Health, and Social Work. Industries like Mining, Finance,
Wholesale and Retail, Construction, and Real Estate should be subsidized the most dur-
ing the pandemic. China has announced a reduced value-added tax for different indus-
tries by 2019. The tax reform reduces the tax rates for the current 16 % rate for indus-
tries including manufacturing to 13%, reduces the current 10% rate for industries such
as transportation, postal services, construction, real estate, and agricultural products to
9%, and keeps the 6% rate unchanged mainly covering sectors such as I.T. and software,
health care, finance, social services, and telecommunications services. 18 The quanti-
tative results suggest that this tax reform implemented during the pandemic leads to
some welfare loss as the government should subsidize the industry like finance instead
of industries like agriculture and postal.

5.5 Industrial Policy in China:

To take a closer look at the case of China, we know the Chinese government has im-
plemented so-called industrial policies to provide financial support and subsidies to

18For small companies in China, their value added tax base is their total revenue.
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selected industries. These ’implicit’ subsidies are not reflected in the uniform tax rates
applied across the manufacturing sector. To investigate this, I break down the manufac-
turing sector into smaller industries, construct its input-output table, and compute the
optimal taxation for those industries in the manufacturing sector, assuming the govern-
ment can set varying tax rates on these industries through its industrial policy.

Figure 8: Optimal Revenue Tax Within Manufacturing Industry in China

Figure 8 shows the result of optimal taxes within the manufacturing sector. The tax
burden primarily falls on simpler industries, such as Food and Beverage, Wood Prod-
ucts, and Nonmetallic Minerals within the manufacturing sector, while government
subsidies are directed towards more modernized industries like Transport Equipment
and Machinery. The production networks plays a crucial role in determining the sign of
the optimal taxation for some industries: in a counterfactual scenario with a symmetric
input-output structure, the sign of optimal taxation shifts for industries such as Metal,
Nonmetallic Minerals, Chemicals, and Rubber & Plastics.

5.6 Welfare Loss:

I compute the welfare gains for both countries. Compared to the scenario where the
government uses a zero revenue tax and equalized consumption tax, I calculate the
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percentage welfare gain when tax rates are determined by considering the varying pre-
cision of industries. For China, the welfare gain is 1.23%, and for the U.S., it is 0.7%.
To check robustness, I test different values for β0 and β1, and the welfare gains remain
non-negligible.

Welfare Gain: China

β1 = 0.445 β1 = 0.667

β0 = 0.273 0.32% 0.71%
β0 = 0.410 0.62% 1.23%

Welfare Gain: US

β1 = 0.221 β1 = 0.331

β0 = 0.407 0.53% 0.56%
β0 = 0.611 0.64% 0.70%

Table 4: Welfare gain under optimal taxation
Note: The welfare gain is computed as the percentage change in utility between the scenario where op-
timal taxes are imposed and the scenario where zero revenue tax and constant consumption tax are ap-
plied.

6 Conclusion

This study has explored the optimal taxation within a framework that integrates both
production networks and informational frictions. By developing a model where indus-
tries are interconnected through input-output linkages and where firms possess differ-
ent levels of information precision about shocks, I find how these factors jointly influ-
ence optimal tax policy:

The theoretical analysis shows that the production efficiency result holds in a sym-
metric information environment. However, with asymmetric information, these results
must be adjusted. The Ramsey planner imposes non-zero tax rates on intermediate
goods and differentiated taxes on final goods, with the tax rates determined by the pre-
cision of information available to different industries and two key matrices: the input
reliance matrix and the output allocation matrix within the production network.

In the quantitative exercises, the calibrated model suggests that the optimal revenue
tax rates for the U.S. are modest, while the Chinese government should shift its tax bur-
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den onto the utility, agriculture, and technology sectors. Counterfactual analysis reveals
that production networks can significantly influence the determination of optimal tax
rates.
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Online Appendix of “Information, Production Networks
and Optimal Taxation”

Appendix A Theory

Proof of proposition 1:

1.The ’Only If’ Part:

I solve the equilibrium conditions backwardly: at stage 2, the firm maximizes the after-
tax profit (2) with complete information. The first-order conditions of the intermediate
goods are thus given by

aij
(1 − τ Ind

i (s))pi(s)zi(s)(lij(ωij))
αi ΠN

k=1xaik
ij,k(ωij, s)

xij,k(ωij, s)
= pk(s) (31)

where the left-hand is the marginal profit of intermediate goods, and the right-hand
side is the marginal cost. The equation (31) holds for any island j, industry i and all
intermediate goods k. Substituting (31) into the production function (1), I have

yij(ωij, s) =

[
zi(s)

∏N
k=1 aaik

ik

∏N
k=1 paik

k (s)

(
(1 − τ Ind

i (s))pi(s)
)1−αi

] 1
αi

︸ ︷︷ ︸
Ψy

i (s)

ℓij(ωij) (32)

and

xij,k(ωij, s) = aij(1 − τ Ind
i (s))

pi(s)
pk(s)

Ψy
i (s)︸ ︷︷ ︸

Ψl
ik(s)

lij(ωij) (33)

By using (7), I have that Xik(s) = Ψl
ik(s)Li(s) and thus I can transform the first order

condition (31) by using the aggregate values:

aik
(1 − τ Ind

i (s))pi(s)zi(s)(Li(s))αi ΠN
k=1Xaik

ij (s)

Xij(s)
= pj(s) (34)
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The first order conditions of industry’s good j used in the final consumption goods
sector is given by

β j
P(s)ΠN

i=1(
ci(s)

βi
)βi

cj(s)
= pj(s)(1 + τC

j (s)) (35)

where the left-hand side is a marginal benefit, and the right-hand side is the marginal
cost. The marginal cost of good j includes both its price and the associated consumption
taxes.

At stage 1, for the firms’ problem PFirm, combining with (32), the first order condition
of labor demand lij(ωij) is given by:

Es′|ωij
C(s′)−σ (1 − τ Ind

i (s′))pi(s′)
P(s′)

Ψy
i (s

′) = Es′|ωij
C(s′)−σ wik(ωij)

P(s′)

which can be transformed into the following expression by using (33):

Es′|ωij
C(s′)−σ

αi(1 − τ Ind
i (s′))pi(s′)zi(s′)(lij(ωij))

αi−1ΠN
k=1x

aij
ij,k(ωij, s′)

P(s′)

= Es′|ωij
C(s′)−σ wij(ωij)

P(s′)

Similarly, I can rewrite the above equation by using the aggregate input:

Es′|ωij
C(s′)−σ

αi(1 − τ Ind
i (s′))pi(s′)zi(s′)(Li(s′))αi−1ΠN

j=1X
aij
ij (s

′)

P(s′)

= Es′|ωij
C(s′)−σ wij(ωij)

P(s′)
(36)

as in the second stage, the marginal product of labor must be the same across all
firms within the same industry, given the Cobb-Douglass technology. For the worker’s
optimization problem PWorker at stage 1, the first order condition of labor supply nij on
island j of industry i is given by
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Es′|ωij
C(s′)−σ wij(ωij)

P(s′)
= lε

ij(ωij)

where the left-hand side is the marginal benefit of labor, and the right-hand side is
its marginal disutility. Combining the above two equations, I have

Es′|ωij
C(s′)−σ

αi(1 − τ Ind
i (s′))pi(s′)zi(s′)(Li(s′))αi−1ΠN

j=1X
aij
ij (s

′)

P(s′)
= lε

ij(ωij) (37)

The equation (37) has a direct interpretation. The total revenue in industry j minus
its total cost of intermediate goods is αi pi(s)zi(s)(Li(s′))αi ΠN

k=1Xaik
ik (s′)19. The left-hand

side is the marginal revenue of employment in terms of social welfare, and the right-
hand side is its marginal cost in terms of labor disutility. In contrast to stage 2, where
the first-order conditions are determined by current state variables s (since it is common
knowledge), stage 1 incorporates expectations about future states s′. The future prices
pi(s) are endogenously determined by labor input {Lj(s)} for all industries. The choice
of labor at stage 1, therefore, introduces a sophisticated layer of strategic interaction
among industries. I set Pi(s) and Ti(s) as follows:

Pi(s) ≡ C(s)−σ pi(s)
P(s)

(38)

Ti(s) ≡ C(s)−σ pi(s)
P(s)

(1 − τ Ind
i (s))zi(s)αiL

αi−1
i (s)ΠN

k=1Xaik
ik (s) (39)

where Pi(s) denote the value of good j and Ti(s) denote the marginal benefit of labor,
both in terms of the utility. Using (37), the labor lij(ωij) is given by

lij(ωij) = (Es′|ωij
Ti(s′))

1
ε (40)

which gives (??) by aggregating all labor within one industry. For the representative
household, the budget constraint can be rewritten as

19In the complete information model, it is also the share of labor cost. When information is incom-
plete, firms will have positive or negative profits, and the expenditure of labor wijlij is not necessarily
the fixed share ai of its total revenue.
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P(s)C(s) =
N

∑
i=1

∫
k∈[0,1]

[wiknik + πik] =
N

∑
i=1

(1 − τ Ind
i (s))pi(s)zi(s)αiL

αi
i (s)Π

N
k=1Xaik

ik (s)

(41)

where the second equality holds by using the F.O.C.s of firms at stage 2. Multiplying
both sides by C(s)−σ

P(s) and by using the new notation of Pi(s) and Ti(s), I have

C(s)1−σ =
N

∑
i=1

Ti(s)Li(s) (42)

, which is the implementability constraint for the Ramsey problem.

2.The ’If’ Part:

I construct the allocations, prices, and tax functions. The output yi and ci can be com-
puted using the production function, the labor input Li, and the intermediate input Xij.
The labor supply lij and demand nij on each island is determined by equation (40). Nor-
malizing P to be 1. pi can be derived by using equation (38). Then τ Ind

i can be derived
by using (39). The island output yij and intermediate input xij,k can be derived by using
equations (32)(33). The consumption good tax τC

i can be derived by using equation (35).
The household budget constraint is satisfied for the way of my construction when the
implementability condition holds. The government budget constraint is automatically
satisfied in equilibrium when the household budget constraint and resource constraints
are met. Finally, it’s straightforward to check that all the f.o.cs of equilibrium hold.
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The Ramsey problem:

I write out the Langrange for the Ramsey problem:

L =
∫
[
C(s)1−σ − 1

1 − σ
− 1

ε + 1

N

∑
i=1

∫
[Es′|ωik

Ti(s′)]
ε+1

ε ϕi(ωik|s)dωik

+µR(s)[A(s)ΠJ
i=1(

zi(s)Lαi
i (s)Π

N
k=1Xaik

ik (s)− ∑N
k=1 Xki(s)

βi
)βi − G(s)− C(s)]

+µG(s)[C(s)
1−σ −

N

∑
i=1

Ti(s)Li(s)]

+
N

∑
i=1

N

∑
j=1

µij(s)[
aij

αi
Ti(s)Li(s)− Pj(s)Xij(s)]

+
N

∑
i

µL
i (s)(

∫ [
Es′|ωik

Ti(s′)
] 1

ε
ϕi(ωik|s)dωik − Li(s))]µ(s)ds

F.O.Cs are:

Li(s) : µR(s)
∂Y(s)
∂Li(s)

− µL
i (s)− µG(s)Ti(s) +

N

∑
j=1

µij(s)
aij

αi
Ti(s) = 0 (43)

Pi(s) :
N

∑
i=1

µij(s)Xij(s) = 0 (44)

Ti(s) : − 1
ε

∫
φ̃i(ωik|s)[Es′|ωik

Ti(s′)]
1
ε dωik − µG(s)Li(s) +

N

∑
j=1

µij(s)aij

αi
Li(s)

+
1
ε

∫
µL

i (s̃)
φ(s̃)
φ(s)

[
∫
([Es′|ωik

Ti(s′)]
1
ε −1φi(s|ωik)φi(ωik|s̃)dωik]ds̃ = 0 (45)

Xij(s) : µR(s)
∂Y(s)

∂Xij(s)
− µij(s)Pj(s) = 0, (46)

C(s) : ((1 − σ)µG(s) + 1)C(s)−σ = µR(s) (47)

where φ̃i(ωij|s) =
∫ φ(s̃)

φ(s) φi(s|ωik)φi(ωik|s̃)ds̃ is the probability of receiving signal ωik

given that his belief of state is s.
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Proof of proposition 2:

I use the guess and verify strategy:

Step 1:

Guess µij(s) = 0, Ti(s) = kiT (s), µL
i (s) = kiµ

L(s). The coefficient ki and functional
forms T (s) and µL(s) are undetermined at this moment, and they are going to be solved
later.

Given the guess, from (11)

Li(s) = k
1
ε
i Eωik|s[Es′|ωik

T (s′)]
1
ε = k

1
ε
i L(s; T ) (48)

where L(s; T ) ≡ Eωik|s[Es′|ωik
T (s′)]

1
ε 20. This equation finds Li(s) once I determine

T . As µij(s) = 0, from (46) it implies ∂Y(s)
∂Xij(s)

= 0. Using these N × N equations and the

given set {Li(s)}N
i=1, I can first solve for Xij(s) (which includes N × N unknowns). Once

these are determined, obtaining Yi(s), Ci(s), and the aggregate output Y(s) becomes
straightforward by applying the relevant production functions. They satisfy

aij
βiYi(s)
Ci(s)

/
β jYj(s)
Cj(s)

=
Xij(s)
Yj(s)

(49)

Aggregating both sides over i, I have

∑
i

aij
βiYi(s)
Ci(s)

/
β jYj(s)
Cj(s)

= 1 −
Cj(s)
Yj(s)

Thus

β j =
β jYj(s)
Cj(s)

− ∑
i

aij
βiYi(s)
Ci(s)

20I can have a uniform functional form L(s; T ) for all industries as the information friction is sym-
metric.
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which in matrix form is

β = (I − AT)


β1Y1(s)
C1(s)

...
βNYN(s)

CN(s)

 (50)

It implies [ β1Y1(s)
C1(s)

, · · · , βNYN(s)
CN(s) ]′ = (I − AT)−1β. Their values are constant regardless

of the state s. Let βiYi(s)
Ci(s)

= [(I − AT)−1β]i ≡ D̂i. Substituting it back into (49), I have

Xij(s)
Yj(s)

= aij
D̂i

D̂j
(51)

Multiplying both sides of (43) with Li(s) and substituting (47)(48), I have

αi
βiYi(s)
Ci(s)

((1 − σ)µG(s) + 1)Y(s)C(s)−σ = k
ε+1

ε
i (µL(s)L(s; T ) + µG(s)T (s)L(s; T ))

To ensure the above equation holds, I set ki = (D̂iαi)
ε

ε+1 , as it follows from βiYi(s)
Ci(s)

=

D̂i. Dividing both sides by D̂iαi, I get a single equation

((1 − σ)µG(s) + 1)Y(s)C(s)−σ = µL(s)L(s; T ) + µG(s)T (s)L(s; T ) (52)

In order to satisfy the equilibrium condition (34), Pj(s) is defined as

Pj(s) =
aij
αi
Ti(s)Li(s)

Xij(s)
=

D̂jT (s)L(s; T )

Yj(s)
(53)

For the implementability constraint to hold,

C(s)1−σ = (
N

∑
i=1

k
ε+1

ε
i )T (s)L(s; T ) = T (s)L(s; T ) (54)

Combining with the resource constraint, I have

(Y(s)− G(s))1−σ = T (s)L(s; T ) (55)

From the previous discussion, I know Y(s) − G(s) is a function of T (s). Thus, I
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determine T (s) as the function that solves the above equation.
From (45), given the guess, I need

k
1
ε
i (ε)µG(s)L(s; T ) + k

1
ε
i L(s; T )

= k
1
ε
i

∫
µL(s̃)

φ(s̃)
φ(s)

[
∫
([Es′|ωik

T (s′)]
1
ε −1φi(s|ωik)φi(ωik|s̃)dωik]ds̃ (56)

Dividing both sides by k
1
ε
i , I have a single equation. Combining with (52), I have

((ε + 1)
µL(s)L(s; T )− Y(s)C(s)−σ

(1 − σ)Y(s)C(s)−σ − T (s)L(s; T )
+ 1)L(s; T )

=
∫

µL(s̃)
φ(s̃)
φ(s)

[
∫
([Es′|ωik

T (s′)]
1
ε −1φi(s|ωik)φi(ωik|s̃)dωik]ds̃ (57)

Once I find T (s) using (55), I can also compute C(s), Y(s), L(s; T ) following the way
I discussed. Then I solve µL(s) by using (57) and I define µG(s) ensuring (52) holds and
µR(s) ensuring (47) holds.

Now I verify the guess is correct. Given the guess, conditions (8)(9)(11)(44)(46)(47)
hold automatically. Given the values of ki, (43) and (45) are reduced to conditions (52)
and (57) and those conditions are satisfied by the way I define µL(s) and µG(s). Besides,
(34) is satisfied by the way I construct Pj(s).

Step 2:

The industry revenue tax satisfies: Tj(s)Lj(s) =
(1−τ Ind

j )αj pj(s)Yj(s)
P(s) C(s)−σ. Then

(1 − τ Ind
j (s)) =

Tj(s)Lj(s)
αjPj(s)Yj(s)

= 1 (58)

which implies that industry revenue tax is zero for all industries.
The taxation on the consumption goods satisfies: pj(s)Cj(s)(1+ τC

j (s)) = β jP(s)Y(s).
Transforming it, I have

1 + τC
j (s) =

β jY(s)C−σ(s)
Pj(s)Cj(s)

=
1

Pj(s)Yj(s)
β jYj(s)
Cj(s)

C1−σ(s)
Y(s)
C(s)

=
Y(s)
C(s)
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which implies that the taxation on the consumption goods are equal across different
industries.
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Proof of Theorem 1:

I use the perturbation approach to solve equations (43)-(47):

Zeroth Order Perturbation:

For the budget constraint:

Ȳ − Ḡ = C̄, C̄1−σ =
N

∑
i=1

L̄ε+1
i ,

aij

ai
L̄ε+1

i = P̄jX̄ij, T̄i = L̄ε
i (59)

For the F.O.Cs:

N

∑
i=1

µ̄ijX̄ij = 0, µ̄R
∂Ȳ

∂Xij
= µ̄ijP̄j, ((1 − σ)µ̄G + 1)C̄−σ = µ̄R

µ̄L
i L̄1−ε+1

i = µ̄R
∂Ȳ
∂Li

L̄1−ε+1
i − µ̄G +

N

∑
j=1

µ̄ij
aij

αi
= (ε)(µ̄G +

N

∑
j=1

µ̄ij
aij

αi
) + 1

From proposition 2, I know that the costates µ̄ij = 0 as I can let φ(ω|s) to be Dirac
distribution δ(ω − s) when agents in all industries have perfect information. Then I
have

∂Ȳ
∂Li

L̄−ε
i =

ε + 1µ̄G + 1
µ̄R

=
ε + 1µ̄G + 1

((1 − σ)µ̄G + 1)
C̄σ (60)

where ε+1µ̄G+1
((1−σ)µ̄G+1) gives the wedge of labor supply for the steady state economy. In

steady state, the industry revenue taxes are all zeros τ̄ Ind
j = 0.

First Order Perturbation:

To get the first-order perturbations, I derive the following useful lemma:

Lemma 1. Let φi(s|s̃) ≡
∫

φi(s|ωik)φi(ωik|s̃)dωik represent the probability that the state is
perceived to be s, given that the actual state is s̃. Then I have:

∫
s̃

φi(s|s̃)φ(s̃)
φ(s)

ds̃ = λis,
∫

ωij φ̃i(ωij|s)dωij = s
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where λi =
σ2

is
σ2

is+σ2
ie

denote the precision of industry i about the true state.

Proof. Given Gaussian shocks and signals,

φi(s|s̃)φ(s̃)
φ(s)

=
∫

e
s2−s̃2

2σ2
is

1√
2πσie

e
− (ωik−s̃)2

2σ2
ie

1√
2π

σ2
isσ2

ie
σ2

is+σ2
ie

e
− (s−λiωik)

2

2(σ−2
is +σ−2

ie )−1 dωik

=
1√

2πσie

1√
2π

σ2
isσ2

ie
σ2

is+σ2
ie

∫
e
− 1

2 (s̃
2(σ−2

is +σ−2
ie )+σ−2

ie s2−2σ−2
ie ωik(s+s̃)+(

σ2
is

σ2
is+σ2

ie
+1)σ−2

ie ω2
ik)dωik

=
1√

2πσie

1√
2π

σ2
isσ2

ie
σ2

is+σ2
ie

e

− 1
2 (s̃

2(σ−2
is +σ−2

ie )+σ−2
ie s2− (s+s̃)2

(
σ2

is
σ2

is+σ2
ie
+1)σ2

ie

)

×
∫

e
− 1

2 (
σ2

is
σ2

is+σ2
ie
+1)σ−2

ie (ωik−(
σ2

is
σ2

is+σ2
ie
+1)−1(s+s̃))2

dωik

=
1√

2π
σ2

isσ2
ie

2σ2
is+σ2

ie

e

− (s̃−λi s)2

2σ2
isσ2

ie
2σ2

is+σ2
ie

As φi(s|s̃)φ(s̃)
φ(s) is the density of N (λis, σ2

isσ2
ie

2σ2
is+σ2

ie
), I prove the first part. For the second one, I

have

φ̃i(ωij|s) =
φi(s|ωik)

φ(s)

∫
φ(s̃)φi(ωik|s̃)ds̃ =

φi(s|ωik)φ(ωik)

φ(s)
= φi(ωij|s)

by using the fact that φi(s|ωik)φ(ωik) = φ(s)φi(ωij|s). φ̃i(ωij|s) and φ(ωik) have dif-
ferent meanings, but they are intrinsically the same as we assume people have rational
expectations. Thus, I prove the second part.

Budget Constraint:

To simplify the expression, I mean ∂X(s)
∂s |s=0 by using ∂X(s)

∂s . Specifically, ∂X(s)
∂s |s=0 de-

notes evaluating the partial derivative of X(s) with respect to s at s = 0. For The first
order perturbation of the implementability constraint, I have
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(1 − σ)
∂ log(C(s))

∂s
=

N

∑
i=1

T̄i L̄i

∑N
i=1 T̄i L̄i

(
∂ log(Li(s))

∂s
+

∂ log(Ti(s))
∂s

)

= (1 + τ̄C)
N

∑
i=1

Diai(
∂ log(Li(s))

∂s
+

∂ log(Ti(s))
∂s

) (61)

where Di is the Domar Weight of industry i. I show the last equality step by step.
Using (59), I have T̄i L̄i = L̄ε+1

i . Combining (60) and the following equation

∂Ȳ
∂Li

L̄−ε
i = αiβi

Ȳ
C̄i

Ȳi

L̄i
L̄−ε

i = αiȲ
βiȲ
PiC̄i

PiȲi

Ȳ
L̄−ε−1

i = αiȲ(1 + τ̄C)Di L̄−ε−1
i

We know that L̄ε+1
i ∼ αiDi. Thus, I show the last equality holds. For the Domar

Weight, let D ≡
(

D1
...

DN

)
by using f.o.cs of steady state, we know it satisfies:

D =
1

1 + τ̄C (I − AT)−1β (62)

For the resource constraint, I have

∂ log(C(s))
∂s

=
Ȳ
C̄
(

N

∑
i=1

βi
∂ log(Ci(s))

∂s
+

∂ log(A(s))
∂s

)− Ḡ
C̄

∂ log(G(s))
∂s

(63)

For the equilibrium condition constraints, by using

Eωik|s[Es′|ωik
Ti(s′)]

1
ε ≈ 1

ε
Eωik|s[T̄

1
ε −1

i Es′|ωik
(ds′

∂Ti(s)
∂s

|s=0)]

=
1
ε

∂Ti(s)
∂s

|s=0T̄
1
ε −1

i Eωik|s[Es′|ωik
ds′] =

1
ε

λids
∂Ti(s)

∂s
|s=0T̄

1
ε −1

i

I have

∂ log(Ti(s))
∂s

= λ−1
i (ε)

∂ log(Li(s))
∂s

(64)

∂ log(Ti(s))
∂s

+
∂ log(Li(s))

∂s
−

∂ log(Pj(s))
∂s

=
∂ log(Xij(s))

∂s
(65)
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F.O.Cs:

For Li(s):

∂µR(s)
∂s

∂Ȳ
∂Li

+
∂

∂Y(s)
∂Li(s)

∂s
µ̄R −

∂µL
i (s)
∂s

− ∂µG(s)
∂s

T̄i +
∂Ti(s)

∂s
µ̄G +

N

∑
j=1

aij

αi
T̄i

∂µij(s)
∂s

= 0

Dividing both sides by Ti and using (59)(60) and (64), I have

∂µL
i (s)
∂s

L̄−ε
i =

∂µR(s)
∂s

ε + 1µ̄G + 1
((1 − σ)µ̄G + 1)

C̄σ +
∂log( ∂Y(s)

∂Li(s)
)

∂s
(ε + 1µ̄G + 1)− ∂µG(s)

∂s

+λ−1
i (ε)

∂ log(Li(s))
∂s

µ̄G +
N

∑
j=1

aij

αi

∂µij(s)
∂s

(66)

For Ti(s), using (64) and lemma 1, I have

∂µG(s)
∂s

(ε) = (ε)
N

∑
j=1

aij

αi

∂µij(s)
∂s

− (ε)((ε)µ̄G + 1)
∂log(Li(s))

∂s
+ λi

∂µL
i (s)
∂s

L̄−ε
i (67)

Substituting (66) into (67), I have

∂µG(s)
∂s

[λ−1
i ε + 1] = [λ−1

i ε + 1]
N

∑
j=1

aij

αi

∂µij(s)
∂s

− λ−1
i ε((ε + 1)µ̄G + 1)

∂log(Li(s))
∂s

+
∂µR(s)

∂s
(ε + 1)µ̄G + 1

((1 − σ)µ̄G + 1)
C̄σ +

∂log( ∂Y(s)
∂Li(s)

)

∂s
((ε + 1)µ̄G + 1)

Substuting ∂Y(s)
∂Li(s)

= αiβi
Y(s)
Ci(s)

Yi(s)
Li(s)

, it can be simplified as

∂µG(s)
∂s

[λ−1
i ε + 1]− ∂µR(s)

∂s
(ε + 1)µ̄G + 1

((1 − σ)µ̄G + 1)
C̄σ = [λ−1

i ε + 1]
N

∑
j=1

aij

αi

∂µij(s)
∂s

+((ε + 1)µ̄G + 1)(
∂ log(Y(s))

∂s
+

∂ log(Yi(s))
∂s

− ∂ log(Ci(s))
∂s

− [λ−1
i ε + 1]

∂ log(Li(s))
∂s

) (68)

For the f.o.c of Xij, I have
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∂µij(s)
∂s

=
∂

∂Y(s)
∂Xij(s)

∂s
µ̄R

P̄j

Since

∂Y(s)
∂Xij(s)

= βiaij
Y(s)
Ci(s)

Yi(s)
Xij(s)

− β j
Y(s)
Cj(s)

and the steady state value ∂Ȳ
∂Xij

is zero , I can further get

∂µij(s)
∂s

=
β jȲ
C̄j

µ̄R

P̄j
(

∂ log(Yi(s))
∂s

− ∂ log(Ci(s))
∂s

+
∂ log(Cj(s))

∂s
−

∂ log(Xij(s))
∂s

)

Combining with (60) (64) and (65), I finally have

∂µij(s)
∂s

= ((ε + 1)µ̄G + 1)(
∂ log(Yi(s))

∂s
− ∂ log(Ci(s))

∂s
+

∂ log(Cj(s))
∂s

−[λ−1
i ε + 1]

∂ log(Li(s))
∂s

+
∂ log(Pj(s))

∂s
) (69)

Then

N

∑
j=1

aij

αi

∂µij(s)
∂s

= (εµ̄G + 1)(
1 − αi

αi

∂ log(Yi(s))
∂s

− 1 − αi

αi

∂ log(Ci(s))
∂s

+
N

∑
j=1

aij

αi

∂ log(Cj(s))
∂s

−[λ−1
i (ε − 1) + 1]

1 − αi

αi

∂ log(Li(s))
∂s

+
N

∑
j=1

aij

αi

∂ log(Pj(s))
∂s

) (70)

And

N

∑
i=1

X̄ij
∂µij(s)

∂s
= ((ε + 1)µ̄G + 1)(

N

∑
i=1

X̄ij
∂ log(Yi(s))

∂s
−

N

∑
i=1

X̄ij
∂ log(Ci(s))

∂s
+ XUsed

j
∂ log(Cj(s))

∂s

−
N

∑
i=1

X̄ij[λ
−1
i ε + 1]

∂ log(Li(s))
∂s

+ XUsed
j

∂ log(Pj(s))
∂s

) (71)

where XUsed
j ≡ ∑N

i=1 X̄ij which represents the total use of industry goods j as intermedi-
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ate goods. The perturbation of the f.o.c of Pj implies

N

∑
i=1

X̄ij
∂µij(s)

∂s
= 0 (72)

And the perturbation of the f.o.c of Ci(s) gives

C̄σ ∂µR(s)
∂s

= (1 − σ)
∂µG(s)

∂s
− σ((1 − σ)µ̄G + 1)

∂logC(s)
∂s

(73)

I use the matrix notations to solve the above equations:

∂L ≡


∂ log(L1(s))

∂s
...

∂ log(LN(s))
∂s

 , ∂C ≡


∂ log(C1(s))

∂s
...

∂ log(CN(s))
∂s

 , ∂Y ≡


∂ log(Y1(s))

∂s
...

∂ log(YN(s))
∂s

 ∂P ≡


∂ log(P1(s))

∂s
...

∂ log(PN(s))
∂s



α ≡


α1 0 0

0
. . . 0

0 0 αN

 , X̄ ≡ [X̄ij], XUsed ≡


XUsed

1 0 0

0
. . . 0

0 0 XUsed
N

 , λ =


λ1 0 0

0
. . . 0

0 0 λN


Combining (71) and (72), I have

(XUsed − XT)∂C + XT ∂Y − XT [λ−1ε + I]∂L + XUsed∂P = 0 (74)

Lemma 2.

∂C = C−1[((Y(I − α)− XT)(λ−1ε + I) + αY)∂L + (XUsed − YA)∂P + Y∂Z] (75)

∂Y = [(λ−1ε + I)(I − α) + α]∂L − A∂P + ∂Z (76)

Proof. For the Cobb-Douglas production function, Yi = zi(s)Lαi
i (s)Π

N
k=1Xaik

ik (s). From
(64) and (65), we know that

N

∑
k=1

∂log(Xaik
ik (s))

∂s
=

N

∑
k=1

aik
∂log(Xik(s))

∂s
=

N

∑
k=1

aik((λ
−1
i ε + 1)

∂ log(Li(s))
∂s

− ∂ log(Pk(s))
∂s

)
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which implies 
∑N

k=1
∂log(X

a1k
1k (s))

∂s
...

∑N
k=1

∂log(X
aNk
Nk (s))

∂s

 = (λ−1ε + I)(I − α)∂L − A∂P

Thus I show the expression for ∂Y. As Ci(s) = Yi(s)− ∑N
k=1 Xki(s), I have

∂ log(Ci(s))
∂s

=
Yi(s)
Ci(s)

∂ log(Yi(s))
∂s

− 1
Ci(s)

N

∑
k=1

Xki(s)
∂ log(Xki(s))

∂s

Again by using (64) and (65),

N

∑
k=1

Xki(s)
∂ log(Xki(s))

∂s
=

N

∑
k=1

Xki(s)((λ−1
k ε + 1)

∂ log(Lk(s))
∂s

− ∂ log(Pi(s))
∂s

)

which implies


∑N

k=1 Xki(s)
∂ log(Xk1(s))

∂s
...

∑N
k=1 Xki(s)

∂ log(XkN(s))
∂s

 = XT(λ−1ε + I)∂L − XUsed∂P

Then it’s straightforward to have

∂C = C−1[Y∂Y − XT(λ−1ε + I)∂L + XUsed∂P] (77)

Substituting the expression of ∂Y, I prove the expression for ∂C.

Next, I prove the following key lemma 3, which helps us to largely simplify the
equations I need to solve:

Lemma 3. The solution ∂C and ∂Y satisfy:

∂Y − ∂C = 0 (78)
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Proof. By using lemma 2:

XUsed∂Y − XT [λ−1εI]∂L + XUsed∂P

= XUsed([(λ−1ε + I)(I − α) + α]∂L − A∂P + ∂Z)− XT [λ−1ε + I]∂L + XUsed∂P

= XUsed[(λ−1ε + I)(I − α) + α]∂L − XT [λ−1ε + I]∂L

+XUsed(I − A)∂P + XUsed∂Z

And

∂C − ∂Y = C−1[((Y(I − α)− XT)(λ−1ε + I) + αY)∂L + (XUsed − YA)∂P + Y∂Z]

−[(λ−1ε + I)(I − α) + α]∂L − A∂P + ∂Z

= C−1[((Y − C)((λ−1ε + I)(I − α) + α)∂L − XT(λ−1ε + I)∂L

+(XUsed − (Y − C)A)∂P + (Y − C)∂Z]

Market clearing conditions of each industry imply Y − C = XUsed. Thus

∂C − ∂Y = C−1[XUsed[(λ−1ε + I)(I − α) + α]∂L − XT [λ−1ε + I]∂L

+XUsed(I − A)∂P + XUsed∂Z]

Comparing two expressions, C(∂C− ∂Y) = XUsed∂Y− XT [λ−1ε+ I]∂L+ XUsed∂P. The
equation (74) can be rewritten as

(XUsed − XT)(∂C − ∂Y) + XUsed∂Y − XT [λ−1ε + I]∂L + XUsed∂P = 0

⇒ (Y − XT)(∂C − ∂Y) = 0

which proves the lemma.

By using lemma 2 and lemma 3 , I have
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∑N

j=1
a1j
α1

∂µ1j(s)
∂s

...

∑N
j=1

aNj
αN

∂µNj(s)
∂s

 = ((ε + 1)µ̄G + 1)α−1[(I − α)(∂Y − (λ−1ε + I)∂L)

+(A − (I − α))∂C + A∂P)]

= ((ε + 1)µ̄G + 1)α−1[−(I − α)(λ−1ε + I)∂L + A∂P + A∂C]

= ((ε + 1)µ̄G + 1)α−1(−∂Y + ∂Z + α∂L + A∂C)

= ((ε + 1)µ̄G + 1)[∂L − α−1(I − A)∂Y + α−1∂Z]

Substituting the above equation into (68), and using lemma 3:

λ−1ε
∂µG(s)

∂s
+ Λe = ((ε + 1)µ̄G + 1)(λ−1ε + I)[−α−1(I − A)∂Y + α−1∂Z] (79)

where e is the vector of ones and Λ is a constant given by

Λ =
∂µG(s)

∂s
− ∂µR(s)

∂s
(ε + 1)µ̄G + 1

((1 − σ)µ̄G + 1)
C̄σ − ((ε + 1)µ̄G + 1)

∂ log(Y(s))
∂s

Combining with (73), I have

Λ = ((ε + 1)µ̄G + 1)(σ
∂ log(C(s))

∂s
− ∂ log(Y(s))

∂s
) + (1 − (ε + 1)µ̄G + 1

µ̄G + (1 − σ)−1 )
∂µG(s)

∂s

For the shocks, I define

∂A ≡ ∂log(A(s))
∂s

, ∂G ≡ ∂log(G(s))
∂s

, ∂Z ≡ ∂log(Z(s))
∂s

Using (61)(63), I have

Λ = ((ε + 1)µ̄G + 1)[
σ

(1 − σ)
(1 + τ̄C)DTα(λ−1ε + I)∂L − βT∂C − ∂A]

+(1 − (ε + 1)µ̄G + 1
µ̄G + (1 − σ)−1 )

∂µG(s)
∂s

(80)
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(1 + τ̄C)

(1 − σ)
DTα(λ−1ε + I)∂L =

Ȳ
C̄
(βT∂C + ∂A)− Ḡ

C̄
∂G (81)

To summarize, given shocks {∂A, ∂G, ∂Z}, I have equations (74)(75)(76)(79)(81) to solve
for {∂L, ∂P, ∂C, ∂Y, ∂µG(s)

∂s }.

Taxation

By construction, as Pj =
pj(s)
P(s) C(s)−σ and Tj(s)Lj(s) =

(1−τ Ind
j )αj pj(s)Yj(s)

P(s) C(s)−σ, I have

(1 − τ Ind
j (s)) =

Tj(s)Lj(s)
αjPj(s)Yj(s)

(82)

In the steady state, τ̄ Ind
j = 0, I have

∂τ Ind ≡


∂τ Ind

1 (s)
∂s
...

∂τ Ind
N (s)
∂s

 = ∂Y + ∂P − ∂T − ∂L = ∂Y + ∂P − (λ−1ε + I)∂L (83)

As pj(s)Cj(s)(1 + τC
j (s)) = β jP(s)Y(s), I have

∂τC ≡


∂τC

1 (s)
∂s
...

∂τC
N(s)
∂s

 = (1 + τ̄C)([βT∂C + ∂A − σ

(1 − σ)
(1 + τ̄C)DTα(λ−1ε + I)∂L]e − ∂P − ∂C)

(84)

When λi = λ̄, ∀i, it’s easy to check that ∂L = le, ∂P = λ̄−1εle − (I − A)−1∂Z, ∂C =

∂Y = le+(I − A)−1∂Z. l is a constant determined by the steady state values and shocks.
By using the fact that βi

Ȳi
C̄i

= (1 + τ̄C)Di, I can compute l:

l =
Ȳ
C̄ ((1 + τ̄C)DT∂Z + ∂A)− Ḡ

C̄ ∂G
1

(1−σ)
(λ̄−1ε + 1)− Ȳ

C̄

(85)

Immediately, I have ∂τ Ind = 0 for this symmetric information case. This result is
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what I have shown in the proposition 2. For different λi, let λ̄ ≡ ∑N
i=1 αiDiλi
∑ αiDi

. The equa-
tions are non-linear in λi, so I do the linear approximation of these equations for λi

around λ̄.
Let λ̃i = λ−1

i − λ̄−1. Asymmetric information leads to changes in the solutions,
which I define as the following new set of solutions:

∂L = le + ∂L̃, ∂P = λ̄−1εle − (I − A)−1∂Z + ∂P̃ , ∂Y = le + (I − A)−1∂Z + ∂Ỹ

The linear approximation of (76) for λi is

∂Ỹ = εl(I − α)


λ̃1
...

λ̃N

+ [(ελ̄−1 + 1)(I − α) + α]∂L̃− A∂P̃ (86)

The equation (74) is equivalent to

XUsed[(λ−1ε + I)(I − α) + α]∂L − XT [λ−1ε + I]∂L

+XUsed(I − A)∂P + XUsed∂Z = 0

Then I have

XUsedεl(I − α)


λ̃1
...

λ̃N

− XT εl


λ̃1
...

λ̃N

+ XUsed[(λ̄−1ε + 1)(I − α) + α]∂L̃

−XT(λ̄−1ε + 1)∂L̃+ XUsed(I − A)∂P̃ = 0

Let’s define R ≡ (XUsed)−1XT and L ≡ (I − A)−1.The (i, j) element of R is
Xji

∑N
k=1 Xki

,
and it is the proportion of industry i’s output used as intermediate goods by indus-
try j, relative to the total output of industry i consumed as intermediate goods across
all industries. So R is the matrix for input-output linkage, and L is Leontief inverse.
Transforming the above matrix, I have
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∂P̃ = L(−εl(I − α)


λ̃1
...

λ̃N

+ εlR


λ̃1
...

λ̃N


−((λ̄−1ε + 1)(I − α) + α)∂L̃+ R(λ̄−1ε + 1)∂L̃ (87)

For (79), I have

(λ̄−1ε
∂µ̃G(s)

∂s
+ Λ̃)e + ε

∂µG(s)
∂s

|λ̄


λ̃1
...

λ̃N



= −((ε + 1)µ̄G + 1)εl


λ̃1
...

λ̃N

− ((ε + 1)µ̄G + 1)(λ̄−1ε + 1)α−1(I − A)∂Ỹ (88)

Substituting (86) and (87) into (88) and noticing that (I − A)AL = A(I − A)L = A,
I have

−
λ̄−1ε

∂µ̃G(s)
∂s + Λ̃

((ε + 1)µ̄G + 1)(λ̄−1ε + 1)
e −

ε( ∂µG(s)
∂s |λ̄ + ((ε + 1)µ̄G + 1)l)

((ε + 1)µ̄G + 1)(λ̄−1ε + 1)


λ̃1
...

λ̃N



= α−1[εl(I − α − AR)


λ̃1
...

λ̃N

+ ((λ̄−1ε + 1)(I − α − AR) + α)∂L̃] (89)

For the industry revenue tax

∂τ Ind = −εl


λ̃1
...

λ̃N

+ ∂Ỹ + ∂P̃ − (λ̄−1ε + 1)∂L̃

Combining with (86) and (87),
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∂τ Ind = −(I − R)[εl


λ̃1
...

λ̃N

+ (λ̄−1ε + 1)∂L̃] (90)

Let ∂L̂ = εl


λ̃1
...

λ̃N

+ (λ̄−1ε + 1)∂L̃. Then from (89) I have

λ̄−1ε
∂µ̃G(s)

∂s + Λ̃
((ε + 1)µ̄G + 1)(λ̄−1ε + 1)

e +
ε( ∂µG(s)

∂s |λ̄ + ((ε + 1)µ̄G + 1)l)
((ε + 1)µ̄G + 1)(λ̄−1ε + 1)


λ̃1
...

λ̃N


= (I − α−1(I − AR))∂L̂− ∂L̃

which implies

∂L̂ = (
ε

ε + λ̄
I − α−1(I − AR))−1

·(
λ̄−1ε

∂µ̃G(s)
∂s + Λ̃

((ε + 1)µ̄G + 1)(λ̄−1ε + 1)
e +

ε) ∂µG(s)
∂s |λ̄

((ε + 1)µ̄G + 1)(λ̄−1ε + 1)


λ̃1
...

λ̃N

)
By using ( ε

ε+λ̄
I − α−1(I − AR))e = ε

ε+λ̄
e − e = −λ

ε+λ̄
e and (I − R)e = 0, it shows that

(I − R)(
ε

ε + λ̄
I − α−1(I − AR))−1 λ̄−1ε

∂µ̃G(s)
∂s + Λ̃

((ε + 1)µ̄G + 1)(λ̄−1ε + 1)
e = 0

Thus I find

∂τ Ind = −(I − R)∂L̂ =
− ∂µG(s)

∂s |λ̄
(ε + 1)µ̄G + 1

(I − R)(I − ε + λ̄

ε
α−1(I − AR))−1


λ̃1
...

λ̃N


Combining (80) and (81), I have
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− ∂µG(s)
∂s |λ̄

(ε + 1)µ̄G + 1
=

( λ̄−1ε+1
1−σ − 1)l − (1 + τ̄C)DT∂Z − ∂A

(λ̄−1ε + 1)− (ε+1)µ̄G+1
µ̄G+(1−σ)−1

Substituting the expression of l and transforming the equation, I have

− ∂µG(s)
∂s |λ̄

(ε + 1)µ̄G + 1
= χZDT∂Z + χA∂A + χG∂G

χZ =
Ȳ
C̄

Ḡ
C̄ (λ̄

−1ε) + 1)

(λ̄−1ε + 1 − Ȳ
C̄ (1 − σ))2

> 0

χA =
Ḡ
C̄ (λ̄

−1ε + 1)

(λ̄−1ε + 1 − Ȳ
C̄ (1 − σ))2

> 0

χG = −
Ḡ
C̄ (λ̄

−1ε + 1 − (1 − σ))

(λ̄−1ε + 1 − Ȳ
C̄ (1 − σ))2

< 0

And it’s easy to check that for χZ, χA and χG, their absolute values increase when Ḡ
Ȳ

or λ̄ increase if σ ∈ [0, 1]. At the same time, I can get

∂L̂ = −
λ̄−1ε

∂µ̃G(s)
∂s + Λ̃

((ε + 1)µ̄G + 1)
e−

(χZDT∂Z + χA∂A + χG∂G)(I − ε + λ̄

ε
α−1(I − AR))−1


λ̃1
...

λ̃N

 (91)

For future use, I let k ≡ − λ̄−1ε
∂µ̃G(s)

∂s +Λ̃
((ε+1)µ̄G+1) to simplify the equations. To solve for k, (81)

implies

DTα∂L̂ = (1 − σ)βT∂Ỹ (92)

From (84), I have
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∂τ̃C = (1 + τ̄C)([βT∂Ỹ − σ

(1 − σ)
(1 + τ̄C)DTα∂L̂]e − ∂P̃ − ∂Ỹ) (93)

To replace ∂Ỹ by ∂L̂, I use

∂Ỹ = L(I − AR − α)∂L̂ +
1

(λ̄−1ε + 1)
Lα(∂L̂ −


λ̃1
...

λ̃N

) (94)

∂Ỹ + ∂P̃ = R∂L̂ (95)

Combining (92) (93) and (95),

∂τ̃C =
Ȳ
C̄
((1 − σ

(1 − σ)
τ̄C)DTα∂L̂e − R∂L̂) (96)

Substituting (91) into (96), I have

∂τ̃C = − Ḡ
C̄

ke − Ȳ
C̄
(χZDT∂Z + χA∂A + χG∂G)DTα(I − ε + λ̄

ε
α−1(I − AR))−1


λ̃1
...

λ̃N

 e

+(χZDT∂Z + χA∂A + χG∂G)R(I − ε + λ̄

ε
α−1(I − AR))−1


λ̃1
...

λ̃N

 (97)

Using (92) and (94) and fact that βTL = DT(1 + τ̄C) and DTα


λ̃1
...

λ̃N

 = 0, I have

k =
Ȳ
C̄ (λ̄

−1ε + 1)(χZDT∂Z + χA∂A + χG∂G)

(λ̄−1ε + 1 − Ȳ
C̄ (1 − σ))

DTα(I − ε + λ̄

ε
α−1(I − AR))−1


λ̃1
...

λ̃N

 e

Substituting the expression of k into (97), I finally get
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∂τ̃C = −
( Ȳ

C̄ )
2(λ̄−1ε + σ Ȳ

C̄ )

(λ̄−1ε + 1 − Ȳ
C̄ (1 − σ))

(χZDT∂Z + χA∂A + χG∂G)DTα(I − ε + λ̄

ε
α−1(I − AR))−1


λ̃1
...

λ̃N

 e

+(χZDT∂Z + χA∂A + χG∂G)R(I − ε + λ̄

ε
α−1(I − AR))−1


λ̃1
...

λ̃N

 (98)

From (84), I have

∂τ̄C =
Ȳ
C̄

Ḡ
C̄
(λ̄−1ε + σ)∂G − (λ̄−1ε + 1)( Ȳ

C̄ DT∂Z + ∂A)

(ελ̄−1 + 1 − Ȳ
C̄ (1 − σ))

e (99)

I know τC = Ḡ
C̄ e + ∂τ̄C + ∂τ̃C. Combining (98), (99) and the expression of χZ, χA

and χG, I prove the theorem.
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Proof for the examples

1. ’Tree’ Networks:
Given this structure of production networks, I have Rim to be either 0 or 1. Whenever

aim is nonzero, it indicates that industry i requires input from industry m, so I must have
Rmi = 1 and Rmj = 1 for any j ̸= i for industry m. Thus

(AR)ij =
N

∑
m=1

aimRmj =

∑N
m=1 aim, if j = i,

0, if j ̸= i.

which gives

(I − ε + λ̄

ε
α−1(I − AR))−1 = − ε

λ̄
I

The special case for this is a two sector model with vertical structure. Since R =(
0 0
1 0

)
21, I have the expression (15)(16) in the main text.

2. Multiple Downstreams:
Given the expressions of A and R in (20), I have

AR =



a1Nb1 a1Nb2 · · · a1NbN−1 0
a2Nb1 a2Nb2 · · · a2NbN−1 0

...
... . . . ...

...
a(N−1)Nb1 a(N−1)Nb2 · · · a(N−1)NbN−1 0

0 0 · · · 0 0


Thus,

21The validity of assigning a zero value to R follows from the discussion in the main text.
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I − AR =



1 − a1Nb1 −a1Nb2 · · · −a1NbN−1 0
−a2Nb1 1 − a2Nb2 · · · −a2NbN−1 0

...
... . . . ...

...
−a(N−1)Nb1 −a(N−1)Nb2 · · · 1 − a(N−1)NbN−1 0

0 0 · · · 0 1


As α−1 = diag

(
1

1−a1N
, 1

1−a2N
, . . . , 1

1−a(N−1)N
, 1
)

, I have

I − ε + λ̄

ε
α−1(I − AR) =



1 − ε+λ̄
ε · 1−a1Nb1

1−a1N
− ε+λ̄

ε · a1Nb2
1−a1N

· · · − ε+λ̄
ε · a1NbN−1

1−a1N
0

− ε+λ̄
ε · a2Nb1

1−a2N
1 − ε+λ̄

ε · 1−a2Nb2
1−a2N

· · · − ε+λ̄
ε · a2NbN−1

1−a2N
0

...
... . . . ...

...

− ε+λ̄
ε · a(N−1)Nb1

1−a(N−1)N
− ε+λ̄

ε · a(N−1)Nb2
1−a(N−1)N

· · · 1 − ε+λ̄
ε · 1−a(N−1)NbN−1

1−a(N−1)N
0

0 0 · · · 0 1 − ε+λ̄
ε


The change in the industry’s revenue tax satisfies

∆τ Ind = −(χZDT∂Z + χG∂G)(I − R)(I − ε + λ̄

ε
α−1(I − AR))−1



0
...

∆λi
...
0


It gives us

∆τ Ind
j =

−(χZDT∂Z + χG∂G) ε+λ̄
ε ajNbi

(
1− ε+λ̄

ε

)
·∏m ̸=i,j

(
ε+λ̄

ε −1+amN

)
M∏m ̸=i(1−amN)

∆λi if j ̸= i and j < N

−∑N−1
k=1 bk∆τ Ind

k if j = N.

where M = det
(

I − ε+λ̄
ε α−1 (I − AR)

)
. M always takes the negative values if

∑N
i=1 bi = 1 and 0 < aiN < 1. Thus I show that ∆τ Ind

j < 0 when j < N and j ̸= i.
Finally, I have
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∆τ Ind
j

∆τ Ind
k

=
λ̄
ε + akN
λ̄
ε + ajN

which implies that |∆τ Ind
j | ⋛ |∆τ Ind

k | iff ajN ⋛ akN, ∀j, k ̸= i;
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Appendix B Empirical Evidence

B.1 Texture analysis of attention:

I employ dictionary-based frequency counts that identify the attention of different in-
dustries toward different macroeconomic topics. The methodology is based on the ap-
proach of Song and Stern (2023). For each topic, I match each topic with a keyword
dictionary composed of terms and phrases frequently found in Econoday, which pro-
vides updates on significant economic events and is the service behind the Bloomberg
economic calendar.

Topic Keywords

Output GDP, economic growth, macroeconomic condi-
tion, construction spending,
national activity, recession

Government Spending government spending
Fiscal Policy fiscal deficit, fiscal policy, tax rebate, govern-

ment subsidy,
government support

Production Networks intermediate input, intermediate goods, up-
stream, downstream

Table A1: Macroeconomic topics and keywords

For the U.S., I use all electronically available 10-K and 10-Q filings by publicly listed
US companies between 1994 and 2023. For China, I use the annual report of all listed
firms in Shanghai Stock Exchange (SSE) and Shenzhen Stock Exchange (SZSE) between
2001 and 2022. The keywords for China are the same set as for the U.S., except that they
are translated into Chinese.

I classify U.S. industries using the 2-digit NAICS system. For China, the industry
classification follows the standards in the ”Industrial Classification for National Eco-
nomic Activities,” as defined by the National Bureau of Statistics of China.
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Figure A1: Example: FORM 10-Q of Apple

Notes: The content of the 10-Q report for Apple for the fiscal quarter ended December 30.
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The input-output data of China comes from the Asian Development Bank (ADB). To
compile the industry’s output data with the coding system following the NBS of China,
the table below shows the mapping for the industry names:

Industry: NBS of China Industry: ADB
Mining Mining and quarrying

Manufacturing

Food, beverages, and tobacco
Textiles and textile products
Leather, leather products, and footwear
Wood and products of wood and cork
Pulp, paper, paper products, printing, and publishing
Coke, refined petroleum, and nuclear fuel
Chemicals and chemical products
Rubber and plastics
Other nonmetallic minerals
Basic metals and fabricated metal
Machinery, nec
Electrical and optical equipment
Transport equipment
Manufacturing, nec; recycling

Utilities Electricity, gas, and water supply
Construction Construction

Wholesale & Retail
Sale, maintenance, and repair of motor vehicles and motorcycles; retail sale of fuel
Wholesale trade and commission trade, except of motor vehicles and motorcycles
Retail trade, except of motor vehicles and motorcycles; repair of household goods

Accommodation & Catering Hotels and restaurants

Transport & Postal

Inland transport
Water transport
Air transport
Other supporting and auxiliary transport activities; activities of travel agencies

IT & Software Post and telecommunications
Finance Financial intermediation
Real Estate Real estate activities
Leasing & Business Services Renting of M&Eq and other business activities

Public Admin & Social Services Public administration and defense; compulsory social security
Other community, social, and personal services

Education Education
Health & Social Work Health and social work

Table A2: Industry Classification
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I construct an alternative measure of exposure to business shocks using the Inte-
grated Industry-Level Production Account (KLEMS). This dataset provides estimates
of total factor productivity (TFP) and labor productivity across various industries. An
industry’s exposure is measured by its correlation with either the aggregate TFP (us-
ing Total Factor Productivity at Constant National Prices for the United States) or labor
productivity (using Constant GDP per capita for the United States) from the Federal Re-
serve Bank of St. Louis (FRED). The results confirm that an industry’s attention remains
positively associated with its exposure to business cycle shocks.

Figure A2: Exposure and attention: alternative construction

Note: The exposures to business shocks are computed using the correlation of industry TFP (left) or in-
dustry labor productivity (right) with the aggregate TFP or aggregate labor productivity. The attention
is computed by taking the average attention index from 1997 to 2023. The three digit NAICS system
specifies the industry.

B.2 Regression:

To check the robustness of the calibration for β0 and β1, I refer to other ways to construct
the attention index. I use the attention index constructed by 10-K filling or the annual-
ized 10-Q attention index (averaging them within the same year). The assumption is
the same: the affine relationship exists between information precision and attention.
Table A3 shows the regression outcome for these two attention indexes. The value of β1

ranges from 0.342 to 0.691, with the baseline calibration for the U.S. set at 0.361, align-
ing closely with estimates from other approaches. Since I do not have firms’ forecasts of
overall economic output (GDP) for China, I use the 10-K attention result as the baseline

78



calibration for China. Although the actual value of β1 and β1 may differ, in terms of the
focus for the industrial policy by using the industrial revenue tax, the theory suggests
that changes in optimal industrial revenue taxation are proportional to changes in β1

and independent of changes in β0.

10-K Attention Average 10-Q Attention

(1) (2) (1) (2)
Forecast Difference Forecast Revision Forecast Difference Forecast Revision

β1 0.667** 0.691*** 0.342 0.499**
(0.332) (0.206) (0.235) (0.206)

β0 0.0141 0.0568
(0.0555) (0.0558)

1 − β0 0.590*** 0.270***
(0.0993) (0.0642)

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table A3: The estimation of β0 and β1 for 10-K and average 10-Q attention

Note: The first column presents the results for regression (29), using the difference between the mean
forecast and individual forecasts as the dependent and independent variable. The second column shows

the results for regression (30), with forecast revisions as the dependent variable.
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B.3 Quantitative:

To compute the optimal tax for the U.S. and China, I use the input-output table data
from BEA for the US and ADB for China. The theorem shows that optimal taxation
relies on two key matrices: the input reliance matrix A and the output allocation matrix
R. Figure A3 shows the heatmap for these two matrices for both countries:

Figure A3: Heatmap of production network matrices
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To compute the optimal taxation for the industries within the manufacturing sector,
I recompute the input-output table for China, where the manufacturing sector is disag-
gregated into sub-industries to produce different types of goods. Figure A4 shows the
heatmap:

Figure A4: Heatmap include industries within manufacturing sector
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Appendix C Dynamic Model

I extend the framework into a dynamic model:

Model

Preference and Technology:

The preference of a representative household over consumption and labor is given by:

EHH

∞

∑
t=0

βt

(
C1−σ

t − 1
1 − σ

−
N

∑
i=1

1
ε + 1

∫
k∈[0,1]

nε+1
ik,t dj

)

The household’s period-t budget constraint can be expressed in nominal terms, as
follows:

(1 + τC
t )PtCt + Bt+1 +

∫
s∈St+1

Qt+1,sDt+1,sds =

N

∑
i=1

∫
j∈[0,1]

[wij,tnij,t + πij,t]dj + (1 + Rt)Bt + Dt,st

where Bt+1 denote non-contingent debt instrument, Rt denotes the nominal inter-
est rate between t and t + 1. Dt+1,s denote the quantities of state-contingent assets (or
Arrow securities), Qt+1,s denote the cost of the state-contingent assets, and τC

t denote
proportional tax on consumption. The production side is the same as the static model.
The key assumption is that D0,s0 equals zero for any realization of s0. In other words,
the time 0 shock is not insured by the state-contingent asset, meaning period 0 shock is
treated as unexpected. For the Cobb-Douglas production function, the effective tax rate
on the final consumption goods is given by

(1 + τC
t ) = ΠN

m=1(1 + τC
m,t) (100)

Government:

The government’s budget constraint for period t, in nominal terms, is given by
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Bt(1 + Rt) + Dt,st + PtGt = Bt+1 +
∫

s∈St+1
Qt+1,sDt+1,sds + Tt (101)

where Gt is exogenous real level of government spending and Tt is nominal level of
tax revenue:

Tt =
N

∑
i=1

∫
j∈[0,1]

τ Ind
i,t pi,tyij,tdj +

N

∑
i=1

τC
i,t pi,tci,t (102)

Information Friction:

Nature draws a random variable st from a set St in each period t. The state at t is repre-
sented by the history of shocks, denoted as st ≡ {s0, s1, . . . , st}. The agents on island j
of industry i receive a random variable ωt

ij from a set Ωt
i , following a probability distri-

bution Φi,t(ω
t
ij|st). This variable captures all the information that the firm and worker

on island i of industry i has in period t. The probability distribution Φi,t is industry-
specific, meaning that firms in different industries may receive signals from different
distributions. There are two stages. In stage 1, the firm decides labor demand lij(ωt

ij)

to maximize the utility-adjusted after-tax profit, given his information ωij,t. The worker
decides labor supply nij(ω

t
ij) to maximize the expected utility. In stage 2, when prices

and tax rates are realized, the firm chooses intermediate input xij(ω
t
ij, st) to maximize

its profit.
I am restricting the information frictions to the production side where the representa-

tive household and the government have complete information as Angeletos and La’O
(2020). The household chooses consumption Ct(st), the non-contingent debt Bt+1(st)

and the state-contingent asset Dt+1,st+1(st+1) to maximize his expected utility function
given the prices and policy rates subject to its budget constraint.

Ramsey Problem

The prices of different industry goods, consumption goods, government bonds, and
state-contingent assets are functions of state st:

{pi,t(st), Pt(st), Rt(st), Qt,st+1(st+1))}
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The Ramsey planner sets the policy rates that are state-contingent on the whole his-
tory st:

{τ Ind
i,t (st), τC

i,t(s
t)}

The labor functions nij,t(ω
t
ij), lij,t(ωt

ij) are measurable to the signal ωt
ij, and inter-

mediate input xij,t(ω
t
ij, st) are measurable to the tuple (ωt

ij, st). Given the tax rates, an
equilibrium is triplet of allocations, prices and policy rates that satisfy (i) Ct(·), Bt(·)
and Dt,s(·) solve the household’s problem; (ii) lij,t(·) and xij,t(·) solve the firm’s prob-
lem; (iii) nij,t(·) solves the worker’s problem (iv) the resource constraint is satisfied; (v)
the government’s budget constraint is satisfied; and (vi) all markets clear. The Ramsey
planner chooses the tax functions to maximize welfare.

Optimal Taxation

The following proposition characterizes the feasible set of equilibrium:

Proposition 5. A feasible allocation, ξ ∈ X , is part of an equilibrium if and only if the following
two properties hold: (i) the allocation satisfies the implementability condition:

∞

∑
t=0

βtEst|s0 C1−σ
t (st)−

∞

∑
t=0

βtEst|s0

N

∑
i=1

Ti,t(st)Li,t(st) = 0 ∀s0 (103)

(ii) for any t and st, there exist functions ψC
i,t(s

t) and ψInd
i,t (st) such that the equilibrium

conditions from f.o.s of households and firms are satisfied:

N

∏
i=1

(
zi,t(st)Lαi

i,t(s
t)∏N

k=1 Xaik
ik,t(s

t)− ∑N
k=1 Xki,t(st)

βi

)βi

− Gt(st)− Ct(st) = 0 (104)

aij

αi
Ti,t(st)Li,t(st) = Pj,t(st)Xij,t(st) ∀i, j (105)

Es′|ωik
TL(s′) = nε

ij,t(ω
t
ij) ∀i (106)

Li,t(st) =
∫

j∈[0,1]
nij,t(ω

t
ij)dj (107)
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where

Pi,t(st) = ψC
i,t(s

t)βiCt(st)−σ Ct(st)

ci,t(st)

Ti,t(s) = ψInd
i,t (st)βiCt(st)−σ Ct(st)

ci,t(st)
zi,t(st)αiL

αi−1
i,t (s)

N

∏
k=1

Xaik
ik,t(s

t)

Definition 3. The information is symmetric iff each industry i receive signals from the same
distribution ωt conditional on st: Φi(ω

t|st) ≡ Φ(ωt|st).

Theorem 3 (Generalizing Proposition 2). If the information is symmetric, the optimal taxa-
tion is to set

τ Ind
i,t (st) = 0 ∀i, t, st

τC
i,t(s

t) = τ̄C
t (s

t) ∀i, t, st

We still have equalized tax rates on consumption goods and zero revenue tax. The
difference from the complete information case is that the consumption goods tax is not
constant. Instead, it depends on the realization of st. The reason is that the govern-
ment should tax agents when they collectively have less information, as it distorts labor
less. The information precision depends on the history of shocks. For asymmetric in-
formation, assume that the shocks and information structure are Gaussian. I have the
following generalizations:

Theorem 4 (Generalizing Theorem 2). The optimal industry revenue tax at state st is given
by

τ Ind
t = −(χZDT∂Z + χG∂G)(I − R)(I − ε + λ̄

ε
α−1(I − AR))−1λ̂t

where λ̂j,t = λj,t − λ̄t, λ̄t =
∑N

j=1 αjDjλj,t

∑N
j=1 αjDj

, and

λj,t = 1 −
t

∏
m=0

Kj,m

where Kj,m is the Kalman weight on the past forecast for forecaster in industry j at
period m.
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Proof for the dynamic model

Proof of proposition 5

Proof. Necessity. I characterize the equilibrium conditions to prove the necessity: I
first solve the optimal behavior of the representative households, firms, and workers
on different islands in different industries. The representative household chooses the
{Ct(st), Bt(st), Dt(t, st)} to maximize his expected utility. The Lagrangian for the house-
hold’s problem is given by

LHH =
∞

∑
t=0

βt
∫ {Ct(st)1−σ − 1

1 − σ
−

N

∑
i=1

1
ε + 1

∫
j∈[0,1]

nε+1
ij,t (ω

t
ij)dj

− µHH(st)

[
(1 + τc

t (s
t))Pt(st)Ct(st) + Bt+1(st) +

∫
s∈St+1

Qt+1,s(s)Dt+1,s(s)
]

+ µHH(st)

[∫
j∈[0,1]

[wij(ω
t
ij)nij(ω

t
ij) + πij(ω

t
ij, st)]dj

+ (1 + Rt(st−1))Bt(st−1) + Dt,st(st)

]}
dΨ(st)

The F.O.Cs are given by

Uc,t(st)− µHH(st)
(
1 + τc

t (s
t)
)

Pt(st) = 0, ∀st (108)

−µHH(st) + βEst+1|st µHH(st+1)
(
1 + Rt+1(st)

)
= 0, ∀st (109)

−Pr(st+1|st)Qt+1,st+1(st+1)µHH(st) + βµHH(st+1) = 0, ∀st (110)

Combining (108) and (109) I derive the household’s Euler equation

Uc(st)

(1 + τc
t (st))Pt(st)

= βE

[
Uc(st+1)

(1 + τc
t (st+1))Pt+1(st+1)

(1 + Rt+1(st))
∣∣∣st
]

(111)

From (108) and (110), I find that the state-contingent price satisfies

Qt+1,st+1 = β Pr(st+1
∣∣∣st)

Uc(st+1)

Uc(st)

(1 + τc
t (s

t))Pt(st)

(1 + τc
t+1(s

t+1))Pt+1(st+1)
(112)

Multiplying the household budget constraint at st by βt Uc(st)
(1+τc

t (st))Pt(st)
Pr(st), and then
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integrating over st conditional on s0:

βt
∫ [

Uc,t(st)Ct(st) +
Uc,t(st)

(1 + τc
t (st))

Bt+1(st)

Pt(st)

+
∫

s∈St+1

Uc,t(st)

(1 + τc
t (st))

Qt+1,s(s)Dt+1,s(s)
Pt(st)

ds
]

dΨ(st|S0)

= βt
∫ [ Uc,t(st)

(1 + τc
t (st))

1
Pt(st)

N

∑
i=1

∫
j∈[0,1]

[wij(ω
t
ij)nij(ω

t
ij) + πij(ω

t
ij, st)]dj

+
Uc,t(st)

(1 + τc
t (st))

(1 + Rt(st−1))Bt(st−1)

Pt(st)
+

Uc,t(st)

(1 + τc
t (st))

Dt,st(st)

Pt(st)

]
dΨ(st|s0) (113)

Summing the above equation over t and combining with (111)(112), I have

∞

∑
t=0

βtEst|s0C1−σ
t (st)−

∞

∑
t=0

βtEst|s0

N

∑
i=1

∫
j∈[0,1]

[wij(ω
t
ij)nij(ω

t
ij) + πij(ω

t
ij, st)]dj

=
∞

∑
t=0

βtEst|s0C1−σ
t (st)−

∞

∑
t=0

βtEst|s0

N

∑
i=1

(1 − τInd
i,t (st))pi,t(st)zi,t(st)αiL

αi
i,t(s

t)
N

∏
k=1

Xaik
ik,t(s

t)

=
∞

∑
t=0

βtEst|s0C1−σ
t (st)−

∞

∑
t=0

βtEst|s0

N

∑
i=1

Ti,t(st)Li,t(st)

=
Uc,0(s0)

(1 + τc
0(s0))

(1 + R0(s−1))B0(s−1)

P0(s0)
= 0 (114)

where I assume B0 = 0 to ensure that period 0 is not treated as special. Ti,t(st) and
Pi,t(st) are defined by in our static model:

Pi,t(st) ≡ Ct(st)−σ pi,t(s)
Pt(s)

(115)

Ti,t(s) ≡ Ct(st)−σ pi,t(st)

Pt(st)
(1 − τ Ind

i,t (st))zi,t(st)αiL
αi−1
i,t (s)

N

∏
k=1

Xaik
ik,t(s

t) (116)

I have the implementabiliy constraint (114). For the production side, I solve the
equilibrium conditions backwardly. The equations are the similar to those in the static
model. Then I prove proposition 5: .

Sufficiency. Take any allocation ξ̄ that satisfies (114)(104)(105)(106). I now prove that
there exists a set of tax rates {

τC
it (s

t), τ Ind
it (st)

}
,
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a local wage wij,t(ω
t
ij), relative prices {pi,t(st)}i∈{1,...,N}, an interest rate function Rt+1(st),

and a path for nominal debt holdings Bt+1(st) and assets Dt,st+1(st+1) that implement
this allocation as an equilibrium. I construct the equilibrium prices and policies as fol-
lows.

By normalizing the price of final goods Pt(st) to be 1, the relative prices are given by

pi,t(st)

Pt(st)
= Ct(st)σPi,t(st)

The local wage rate is

wij,t(ω
t
ij) =

nε
ij,t(ω

t
ij)

Es′|ωt
ij
Ct(s′)−σ 1

Pt(s′)

The state-contingent taxes are derived by using (115) (116):

(1 + τC
i,t(s

t)) =
1

ψC
i,t(s

t)
; (1 + τ Ind

i,t (st)) =
ψInd

i,t (st)

ψC
i,t(s

t)

The f.o.c of intermediate goods are satisfied by using (105). The f.o.c of workers are
satisfied by the way I determine the wage. The f.o.c of the firms for labor are satisfied
by using (106). The resource constraint is ensured by (104).

The interest rate functions are determined by using the Euler condition:

(1 + Rt+1(st)) =

Uc(st)
(1+τc

t (st))Pt(st)

βE
[

Uc(st+1)
(1+τc

t (st+1))Pt+1(st+1)

∣∣∣st
]

The price of Arrow security is given by (112). By these prices, I know the f.o.cs of the
household are satisfied. The last thing to check is the budget constraints of the represen-
tative household. Multiplying the household budget constraint by βt Uc(st)

(1+τc
t (st))Pt(st)

Pr(st|sm),
integrating over st and summing the above equation over t. Combining with the expres-
sions of asset prices, the government bond holdings are given by
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Bm(sm−1) =
Uc,m−1(sm−1)

(1 + τC
m−1(s

m−1))

1
Pm−1(sm−1)

×[
∞

∑
t=m

βtEst|sm−1C1−σ
t (st)−

∞

∑
t=m

βtEst|sm−1

N

∑
i=1

Ti,t(st)Li,t(st)

]
∀m ≥ 1, ∀sm

The holdings of state-contingent assets are given by

Dm,sm(sm) =
Pm(sm)

Uc,m(sm)(1 + τC
m(sm))

[
∞

∑
t=m

βtEst|sm C1−σ
t (st)−

∞

∑
t=m

βtEst|sm

N

∑
i=1

Ti,t(st)Li,t(st)

]
−(1 + RC

m(s
m−1))Bm(sm−1) ∀m ≥ 1, ∀sm

Then, it’s straightforward to check that the household’s budget constraint is satisfied
for t ≥ 1. And using (103), the budget constraint also holds at time 0. Thus, I have
completed the proof of this proposition.

Proof of theorem 3 and theorem 4

Proof. For the Ramsey problem, by combining (106)(107), I have

Eωt
ik|st

[
Es′|ωik

Ti,t(s′)
] 1

ε
= Li,t(st) (117)

Using the primal approach, the Ramsey planner chooses

{Ci,t(ω
t
ij), Li,t(ω

t
ij), Ti,t(ω

t
ij), Ti,t(ω

t
ij), Xij,t(ω

t
ij)} (118)

which are measurable to st to maximize the expected utility

∞

∑
t=0

βtEst

{
C1−σ

t (st)− 1
1 − σ

− 1
1 + ε

N

∑
i=1

Eωt
ik|st

[
Es′|ωik

Ti,t(s′)
] 1+ε

ε

}
(119)

subject to the constraints (103)(104)(105)(117). The Lagrange for the Ramsey problem
is
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LDynamic =
∞

∑
t=0

βt
∫ {C1−σ

t (st)− 1
1 − σ

− 1
1 + ε

N

∑
i=1

Eωt
ik|st

[
Es′|ωik

Ti,t(s′)
] 1+ε

ε

+µR,t(st)[
N

∏
i=1

(
zi,t(st)Lαi

i,t(s
t)∏N

k=1 Xaik
ik,t(s

t)− ∑N
k=1 Xki,t(st)

βi

)βi

− Gt(st)− Ct(st)]

+
N

∑
i=1

µL,t(st)[Eωt
ik|st

[
Es′|ωt

ik
Ti,t(s′)

] 1
ε − Li,t(st)]

+
N

∑
i=1

N

∑
j=1

µij,t(st)[
aij

αi
Ti,t(st)Li,t(st)− Pj,t(st)Xij,t(st)]

}
dΨ(st)

+
∫

µG,0(s0)

{
∞

∑
t=0

βtEst|s0C1−σ
t (st)−

∞

∑
t=0

βtEst|s0

N

∑
i=1

Ti,t(st)Li,t(st)

}
dΨ(s0)

I first solve this relaxed Ramsey problem and then verify this solution is within the
feasible set of equilibrium for the original Ramsey problem. The f.o.cs of the problem
are similar to those for the static model if I replace the state s in those functions by state
st, except that for the implementability constraint, the multiplier is not state-contingent
on st, but it is also related to the period 0 shock s0. The effects of shocks after pe-
riod 0 can be smoothed by the state-contingent assets Dt,s. I assume that µij(st) = 0,
Ti,t(st) = (D̄iαi)

ε
ε+1Tt(st), µL

i,t(s) = (D̄iαi)
ε

ε+1 µL
t (s

t). The proof strategy is similar to the
static model. The implementability condition is different from the static model:

∞

∑
t=0

βtEst|s0(Y(st)− G(st))1−σ −
∞

∑
t=0

βtEst|s0Tt(st)L(st; Tt) = 0

The equation (57) hols if I replace s by st and ωij by ωt
ij. And (52) becomes

((1 − σ)µG(s0) + 1)Yt(st)Ct(st)
−σ

= µL,t(st)Lt(st; Tt) + µG,t(st)Tt(st)Lt(st; Tt)

Again, I can compute Li,t(st), Xij,t(st), Yt(st), Ct(st) from the guess and equilibrium
conditions once I know Tt(st). Thus, I have three sets of equations shown above and
three sets of unknows {Tt(st), µL,t(st), µG,t(s0)}. I got the equilibrium by solving the
functional equations and combining the guess and how I constructed the solution. In
this equilibrium, it’s easy to check that the optimal revenue taxes τ Ind

j,t (st)) are zeros and
the optimal consumption taxes τC

j,t(s
t) are equalized as in the static model.

When the information is asymmetric, I refer to the perturbation approach. The dif-
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ference is that, the counterpart for λj from the static model to the dynamic setting is

λj ≡ Est

[
Eωt

ij
[s0]
]

With the state-contingent asset, the effect of shocks after 0 on the government budget
constraint will be perfectly smoothed. Thus, what matters is only the period 0 shock.
But the distribution beliefs of s0 update and is associated with the underlying state st.

The forecasters i in industry j update his forecast of the s0 rate using a Kalman filter,
as follows 22:

Ei,j,t[s0] =

(
1 −

M

∑
n=1

λ
pub
n,j,t −

K

∑
n=1

λ
private
n,j,t

)
Ei,j,t−1[s0]

+
M

∑
n=1

λ
pub
n,j,t x̂

pub
n,t +

K

∑
n=1

λ
private
n,j,t x̂private

i,j,n,t

where λ
pub
n,j,t and λ

private
n,j,t are the Kalman gains for the n-th public signal x̂pub

n,t and n-th

private signal x̂private
i,j,n,t . Taking the expectation over ωt

ij:

Est [Ei,t[s0]] =

(
1 −

M

∑
n=1

λ
pub
n,j,t −

K

∑
n=1

λ
private
n,j,t

)
Est−1 [Ei,t−1[s0]]

+
M

∑
n=1

λ
pub
n,j,ts0 +

K

∑
n=1

λ
private
n,j,t s0

= Kj,tEst−1 [Ei,t−1[s0]] + (1 −Kj,t)s0

= Kj,t(1 −
t−1

∏
m=0

Kj,m)s0 + (1 −Kj,t)s0 = (1 −
t

∏
m=0

Kj,m)s0

The theorem can be proved using mathematical induction. Regardless of the num-
ber of shocks or whether the types of signals are known, this theorem can be easily
applied by running a regression on the forecast data to obtain the Kalman weight on the
previous forecast, Kj,t.

22The signal received before t = 0 has no useful information about the unexpected shock s0
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