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Abstract

We develop a multi-industry growth model with labor market frictions to explore

the interaction between such frictions and industrial upgrading and economic growth.

Experienced workers in an old industry lose their industry-specific expertise when

they are relocated to a more capital-intensive industry and suffer a mismatch. These

workers gradually become experienced through on-the-job learning, till the sunrise

industry itself becomes a sunset one and workers have to move to an even more

capital-intensive industry. We analytically characterize the properties of dynamic

labor market performance, the life-cycle dynamics of each of the underlying infinite

industries, and the aggregate growth rates. We show that, without any exogenous

aggregate shocks, the aggregate unemployment rate exhibits recurrent cycles along

with the perpetual structural change driven by capital accumulation.
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1 Introduction

The aggregate growth of an economy is accompanied by changes in its underlying com-
position of industries. It has been well documented that, as GDP per capita increases,
the employment (or value-added) share of the agriculture sector declines, the share of
the manufacturing sector follows a hump shape, and the share of the service sector in-
creases (Kuznets, 1966). The causes and consequences of such phenomena, also known
as the Kuznets facts, have been intensively studied in the literature (Kongsamut et al.,
2001; Ngai and Pissarides, 2007; Herrendorf et al., 2014). Meanwhile, structural change
also occurs at more disaggregated levels. In particular, within the manufacturing sector,
it is empirically established that labor-intensive industries are gradually replaced by
more capital-intensive ones as capital accumulates along the growth path. Moreover,
each industry exhibits a hump-shaped life-cycle dynamic pattern (Chenery, 1960; Ju et
al., 2015). Such a dynamic process is also referred to as industrial upgrading in this pa-
per.

The literature on structural change and industrial upgrading typically assumes fric-
tionless labor markets. However, jobs in different industries usually require different
expertise, which might lead to significant mobility costs across sectors (Lee and Wolpin,
2006). A worker newly relocated from a sunset industry is typically unfamiliar with
a sunrise industry including the corresponding labor market. She presumably has no
clues about implicit job requirements, no tips for job interviews, and no personal con-
nections, so she is less likely to find a job that well matches her skills in the sunrise
industry than in the mature but sunset one. Consequently, she faces a lower job-finding
rate when searching for jobs in a new industry. The goal of this paper is to study in-
dustrial upgrading while explicitly modeling labor market frictions and investigating
the interaction between labor market conditions and industrial upgrading. To this end,
we introduce frictional labor markets, heterogeneity in experiences across workers, and
heterogeneity in job requirements across industries into Ju et al. (2015), which provides
a tractable dynamic general equilibrium framework with multiple industries heteroge-
neous in capital intensities.

We model the mismatch between experience workers accumulated in a sunset indus-
try and the skills firms require in a sunrise industry in a way similar to Restrepo (2015),
but differs in two important dimensions: whereas his model assumes that industries
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are ex-ante symmetric and that structural changes are driven by unbalanced sectoral
productivity growth, our model assumes that industries are asymmetric and hetero-
geneous in capital intensities and that the driving force of structural change is capital
accumulation. In our model, workers relocated from an old (less capital-intensive) in-
dustry are all initially inexperienced in the new (more capital-intensive) industry, and
hence suffer a low job-finding rate due to the mismatch between workers’ expertise for
the old industry and job requirements of the new industry. These workers, once em-
ployed in the new industry, could become experienced through on-the-job learning. As
capital accumulates, the current new industry also eventually becomes a sunset indus-
try, gradually replaced by an even more capital-intensive industry. Workers then have
to reallocate again, so experienced workers become inexperienced workers again after
they move into the new industry, suffering mismatch and a low job-finding rate, and so
on and so forth.

We show that in equilibrium the aggregate unemployment rate exhibits a recurring
cyclical pattern along with the perpetual changes in underlying industrial compositions.
More specifically, we show that when a sunrise industry first emerges, inexperienced
workers in the sunset industry find it profitable to reallocate to the new industry im-
mediately, but experienced workers would only move later as their opportunity cost of
switching industries is higher. The aggregate unemployment rate declines as mismatch
attenuates due to the on-the-job learning in both industries. It takes some time before
experienced workers in the sunset industries start to move out. During this period, all
remaining workers in the sunset industries are experienced ones and free of mismatch,
but the aggregate unemployment rate continues to decline because inexperienced work-
ers are still turning into experienced ones in the sunrise industry. After that, experienced
workers in the sunset industries start to move into the sunrise industry and lose their
industry-specific expertise. The resulting mismatch drives up the aggregate unemploy-
ment rate. This process continues till all experienced workers in the sunset industry
have moved to the sunrise industry, at which point the old industry exits the market
and all workers, employed or unemployed, are in the labor market for the new indus-
try. The equilibrium unemployment rate reaches the maximum value, which completes
one cycle. As capital further accumulates for a while, an even more capital-intensive
industry emerges as a new sunrise industry, which starts a new cycle.

Despite the analytical challenges that result from the high dimentionality and non-
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linearity of the dynamic structural problem, we are able to obtain closed-form solutions
to fully characterize the whole dynamics. Moreover, it also enables us to conduct clean
and unambiguous comparative static analyses. It turns out that three parameters play
key roles: the capital-goods production efficiency (denoted by A), the Poisson rate of
experience accumulation due to on-the-job learning(ξ), and the degree of mismatch (π).
We show that, a larger A translates into faster capital accumulation, a higher speed of
sunrise industries replacing sunset ones, a shorter life span of each industry, a univer-
sally higher level of aggregate unemployment rate, and a faster growth of aggregate
consumption. In particular, the aggregate unemployment rate becomes higher because
workers must relocate to new industries more frequently and hence mismatch occurs
more frequently. Moreover, a higher ξ, i.e. faster experience accumulation, implies a
universally lower aggregate unemployment rate and a shorter life span of each indus-
try, because on-the-job learning dampens the negative impact of mismatch and facili-
tates relocation of experienced workers into new industries. Last, a lower π, or severer
mismatch, implies a universally higher unemployment rate and a longer industry life
span because inexperienced workers suffer lower job finding rates and so experienced
workers become even more reluctant to move to new industries.

Our paper is most closely related to two strands of literature. Firstly, it contributes
to the literature on structural transformation and industry dynamics. In contrast to
widely discussed mechanisms such as income effect due to non-homothetic preferences
(Kongsamut et al., 2001; Buera and Kaboski, 2012; Boppart, 2014; Comin et al., 2021),
or substitution effect due to unbalanced productivity growth across sectors (Ngai and
Pissarides, 2007), the driving force of structural transformation and related industry
dynamics in our model is capital accumulation, which changes relative factor prices, re-
sulting in labor-intensive industries gradually replaced by capital-intensive ones. This
mechanism is articulated in Acemoglu and Guerrieri (2008) and Ju et al. (2015). The
latter is a special case of our model in the following sense: when the job finding rate
becomes sufficiently larger than the separation rate, and hence unemployment disap-
pears, the model in this paper degenerates to Ju et al. (2015).

A few papers of structural transformation characterize labor market frictions. Pis-
sarides (2007) develops a three-sector model with labor search and match, but he as-
sumes that manufacturing and market service require the same skills and the labor
markets for the two sectors are fully integrated, so structural transformation itself does
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not generate structural unemployment. The driving force for structural transformation
in that model is exogenous unbalanced productivity growth across sectors rather than
capital accumulation. Zagler (2009) derives a hump-shaped pattern of unemployment
rate by introducing costly job vacancies in the R&D sector following Romer’s horizon-
tal innovation model, with the driving force for sectoral reallocation being endogenous
innovation instead of capital accumulation as we highlight.

Secondly, our paper is related to the macro labor literature on mismatch and fluctua-
tion of unemployment rates, which study mismatch between job-seekers and vacancies
at the business cycle frequency (Shimer, 2005, 2007; Alvarez and Shimer, 2011).1 Dif-
ferent from the literature, we model mismatch between the knowledge possessed by
experienced workers from old industries and job requirement in new industries. More
importantly, our model does not attempt to explain the business-cycle frequency Shimer
puzzle but rather to focus on the recurring unemployment rate cycles associated with
structural transformation over the long-run economic growth. Restrepo (2015) shows
that the impact of great recessions on labor markets can be amplified with mismatch,
and generate higher volatility than the canonical Mortensen-Pissarides model. He as-
sumes that both the obsolescence of old jobs and the structural shift are exogenous,
whereas in our paper both are endogenous.

The existing literature on cyclical unemployment with a multi-industry setting typ-
ically assumes exogenous sectoral productivity shocks to symmetric industries (Lucas
and Prescott, 1974; Lilien, 1982). In contrast, our model assumes asymmetrical indus-
tries heterogeneous in capital intensity. In addition, the endogenous unemployment
rate cycles in our model are not caused by any exogenous aggregate or sectoral shocks,
but rather by endogenous capital accumulation, because it drives the repeated process
of industrial upgrading, which in turn leads to cycles of old experience obsolesces and
new experience accumulation via on-the-job learning. In this sense, our model speaks
more closely to medium-run cycles than to standard short-run business cycles. In a re-
cent research, Boldrin et al. (2024) build a model in which innovation drives constant

1Sahin et al. (2014) find that mismatch across industries and occupations accounts for 0.6 to 1.7 per-
centage points of rise in the U.S. unemployment rate. They estimate the industry-specific matching
efficiency at the 2-digit industry level and find that traditional industries like mining, retail and con-
struction have much larger matching efficiency than relatively modern industries like information and
finance. This finding is further confirmed by Herz and van Rens (2019), who propose an accounting
framework to estimate the overall magnitude of mismatch-induced unemployment, and they conclude
that mismatch is responsible for 84% of unemployment rate.
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upgrading from less to more capital-intensive technologies. That model generates en-
dogenous cycles in factor income shares, but it does not address structural change or
unemployment as it assumes both homogeneous labor and perfect labor markets.

The rest of the paper is structured as follows: Section 2 presents a simplified model
with finite industries to illustrate the key forces behind the unemployment rate cycle.
Section 3 provides a fully-fledged model with infinite industries to show that the un-
employment rate cycle obtained in Section 2 is endogenously recurrent. There we show
capital accumulation drive the life-cycle dynamics of each of the industries and fluc-
tuation of the aggregate unemployment rate with frictional labor markets. Section 4
concludes. Technical proofs are mostly delegated to the Appendix.

2 A Simple Finite-Industry Model

This section presents a simple finite-industry dynamic model with imperfect labor mar-
kets. The purpose is to analytically characterize the endogenous aggregate unemploy-
ment rate and industrial dynamics along the growth path. Industries are heterogeneous
in capital intensities. Same as Ju et al. (2015), structural transformation is mainly driven
by capital accumulation. The model has two new features: (1) experience is industry-
specific in the sense that all workers relocated from other industries are initially inex-
perienced workers for the new industry, who may become experienced workers at a
Poisson rate; (2) labor markets are frictional in the sense that the job finding rate is finite
and it is higher for experienced workers than inexperienced ones.

Consider a continuous-time economy with a unit mass of identical households. Each
household is initially endowed with physical capital K, inexperienced labor Ll, and
experienced labor Lh. There are two sectors. One sector produces capital goods and the
other produces consumption goods. Capital goods and consumption goods are distinct
and not substitutable. Capital goods are produced using an AK technology. Let K(t)
denote capital stock available at the beginning of time t, then the output flow coming out
of the capital-good sector is AK(t), where parameter A is a positive coefficient capturing
the rate of the investment-specific technological progress. A larger A implies a more
efficient capital goods production. The newly produced capital flow is split between
two different usages:

AK(t) = I(t) + Ω(t), (1)
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where I(t) denotes investment and Ω(t) denotes the flow of capital devoted to the pro-
duction of consumption goods at t. Ω(t) fully depreciates, so K(t) evolves as follows

K̇(t) = AK(t)− Ω(t). (2)

The consumption good, denoted by X, is produced by linearly combining the output
from four industries:

X =
3

∑
n=0

xn, (3)

where xn denotes the non-negative intermediate input produced by industry n, for n =

0, 1, 2, 3. Only the final good X can be used for consumption. Consumption goods and
all the intermediate inputs are non-storable. All technologies exhibit constant returns to
scale

Fn(k, l) =


l

λn min{ k
an , l}

λ3 k
a3

if
if
if

n = 0
n = 1, 2
n = 3

(4)

with a > λ > 1. Therefore an industry with a higher index is not only more capital in-
tensive (a > 1), but also has a higher labor productivity (λ > 1). The assumption a > λ

rules out the trivial case that only the most capital-intensive industry would produce if
capital is used to produce consumption goods.

Households are infinitely-lived and their preferences over consumption streams are
ordered by

∞∫
0

C(t)1−σ − 1
1 − σ

e−ρtdt, (5)

where σ > 0 is the reciprocal of the intertemporal elasticity of substitution and ρ > 0 is
the time discount rate. Following conventions, we assume 0 < A − ρ < σA to ensure
positive but non-explosive consumption growth.

Labor markets are frictional and separate for different industries (n = 0, 1, 2). Labor
markets for industries 0 and 1 function well, so no mismatch occurs and the job finding
follows a Poisson process with constant rate f for all workers in those two industries.2

2The job finding rate is assumed constant not just for simplicity. We show in Appendix B.7.2 that it
is consistent with the socially efficient allocation in the model of Mortensen and Pissarides (1994) with a
matching function.
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However, in industry 2 inexperienced workers suffer from mismatch so their job-finding
rate is π f , lower than that for experienced workers f , where π ∈ (0, 1). A lower π

means a severer mismatch. This is the only difference the mismatch makes. All em-
ployed workers in the same industry have identical productivity, independent of their
experience levels. Jobs separate at an exogenous rate δ for all workers in all industries.
Inexperienced workers in industry 2, when hired, would benefit from on-the-job learn-
ing and become experienced at an exogenous Poisson rate ξ in that industry. A higher
ξ implies a higher efficiency of on-the-job learning. Experience is industry-specific, so
when a worker moves to a new industry, she automatically becomes an inexperienced
worker in that industry no matter whether she was experienced or inexperienced in the
old industry.

Experience in our model captures workers’ knowledge about an industry. For exam-
ple, a worker from a sunset industry might not have enough knowledge about which
subset of jobs matches her the best among the various opportunities offered in a sunrise
industry. These types of mismatch thus result in an initially low job-finding rate. Over
time, as the worker gradually gains experience and expands her network in the new
industry, the mismatch problem becomes less severe. So that she can locate a suitable
job at a greater rate.

Figure 2.1 summarizes the model environment for the consumption goods sector.

Figure 2.1: Environment in the consumption good sector with multiple industries

We use the subscripts h and l to denote experienced and inexperienced works. Let
Uh(t) and Ul(t) denote, respectively, the number of unemployed experienced and in-
experienced workers in the whole economy at time t. Let Ei

j(t), Ui
j(t) and Li

j(t) denote,
respectively, the numbers of employed workers, unemployed workers, and total labor
force, with experience type i in the labor market for industry j at time t, for i ∈ {l, h},
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j ∈ {0, 1, 2}. Obviously, Li
j(t) = Ui

j(t) + Ei
j(t).

Let Ω̃(C, El
0 + Eh

0 , El
1 + Eh

1 , El
2 + Eh

2) denote the minimum amount of capital required
to produce the final consumption C when current total employment in the first three
industries are given by El

0 + Eh
0 , El

1 + Eh
1 and El

2 + Eh
2 , respectively. It is straightforward

to show that

Ω̃(·) =


a
λ C − a

λ (El
0 + Eh

0),
a2

λ2 C − a2

λ2 (Eh
0 + El

0)−
a(a−λ)

λ (Eh
1 + El

1),
a3

λ3 C − a3

λ3 (Eh
0 + El

0)−
a(a2−λ2)

λ2 (Eh
1 + El

1)−
a2(a−λ)

λ (Eh
2 + El

2),

if
if
if

C0 < C ≤ C1

C1 < C ≤ C2

C2 < C

where

C0 = (El
0 +Eh

0), C1 = (El
0 +Eh

0)+λ(El
1 +Eh

1), C2 = (El
0 +Eh

0)+λ(El
1 +Eh

1)+λ2(El
2 +Eh

2).

Substituting Ω̃(·) into (2), we obtain the following capital accumulation equation,

K̇ = AK − Ω̃(C, El
0 + Eh

0 , El
1 + Eh

1 , El
2 + Eh

2) (6)

Further denote λi
j the fraction of unemployed workers with experience type i ∈ {l, h}

who seek jobs in industry j ∈ {0, 1, 2}.3 Then the law of motion for inexperienced
employment in industry 0 is

Ėl
0 = f Ul(1 − λl

1 − λl
2)− δEl

0, (7)

which states that the change in the total number of employed inexperienced workers
in industry 0, Ėl

0, is equal to the new employment flow net of exogenous job separation
δEl

0 at each time point. There are Ulλ
l
0 inexperienced unemployed workers in industry 0,

where λl
0 = 1−λl

1 −λl
2, so the flow of new employment in that industry is f Ul(1−λl

1 −
λl

2) because of no mismatch. Likewise, the law of motion for employed experienced
workers in industry 0 is given by

Ėh
0 = f Uh(1 − λh

1 − λh
2)− δEh

0 . (8)

3By definition, 0 ≤ λi
1, 0 ≤ λi

2, λi
1 + λi

2 ≤ 1, i ∈ {l, h}.
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Similarly, the total number of employment of inexperienced and experienced workers
in industry 1 and 2 evolves as follows, respectively:

Ėl
1 = f Ulλ

l
1 − δEl

1, (9)

Ėh
1 = f Uhλh

1 − δEh
1 , (10)

Ėl
2 = π f Ulλ

l
2 − δEl

2 − ξEl
2, (11)

Ėh
2 = f Ulλ

h
2 − δEh

2 + ξEl
2. (12)

In particular, inexperienced workers in industry 2 suffer from mismatch, so their job
finding rate is lower, given by π f , as stated in (11).

Last, the total number of unemployment for inexperienced and experienced work-
ers, respectively, evolves as follows

U̇h = δ
2

∑
j=0

Eh
j − f Uh, (13)

U̇l = δ
2

∑
j=0

El
j − f Ul(1 − λl

2)− π f Ulλ
l
2, (14)

where (13) states that the change in aggregate experienced unemployment is equal to
the new unemployment flow due to exogenous separation in the three industries net of
new experienced employment flow and (14) states that inexperienced unemployment
is equal to the new unemployment flow caused by exogenous separation in the three
industries net of new employment flow in industries 0 and 1, f Ul(1− λl

2), and new em-
ployment flow in industry 2, π f Ulλ

l
2.

The artificial benevolent planner’s problem is to choose the optimal flow of con-
sumption C(t),investment I(t), capital for consumption production Ω(t), and how to
allocate unemployed workers Uh(t) and Ul(t) into three industries to maximize the
utility of a representative household as shown in (5), subject to the constraints specified
in equations (6)-(14), given K(0), Ui(0), Ei

j(0), i ∈ {l, h}, j ∈ {0, 1, 2}.

We show that the decentralized competitive equilibrium can be characterized by
resorting to the planner’s problem specified above, which is formally stated in the fol-
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lowing proposition.

Proposition 1. There exists a decentralized market equilibrium allocation identical to the arti-
ficial planner’s allocation.

Proof. see Appendix B.1.

The intuition is as follows. Recall that in the standard Diamond-Mortensen-Pissarides
model, Hosios’ condition states that the decentralized market equilibrium achieves the
first best when the surplus share of workers in the Nash wage bargaining is equal to
the elasticity with respect to unemployment in the matching function. When this condi-
tion holds, the externality of unemployed workers’ additional search on firms is exactly
internalized via the wage bargaining power distribution, so workers have the same in-
centive as the planner. Our model is an extreme and degenerate case where the bar-
gaining power parameter for workers and the matching elasticity to unemployment are
both equal to one. Therefore, there exists no externality of additional search because
job-finding rates are constant, independent of unemployment. Meanwhile, firms do not
need to pay any cost to post vacancies and earn zero net profits. As a result, workers
receive all the surplus and there is no distortion of incentives.

Now we characterize the transitional dynamics for the planner’s problem. It is
widely recognized that analytically characterizing the whole transitional dynamic path
is unwieldy even in a one-sector growth environment, let alone in a multi-sector dy-
namic setting such as in our current model. To sharpen the analysis, we assume that
gross flows between employment and unemployment are sufficiently large such that
labor markets adjust fast enough to fully catch up with changes in the capital stock. See
Restrepo (2015) for a similar treatment. In other words, labor allocations resemble the
steady state equilibrium for any given capital allocation between the capital goods sec-
tor and the consumption goods sector. More formally, let f = κ f̂ , δ = κδ̂, and suppose
κ → ∞. This simplification enables us to derive a tractable solution for the dynamic
path of all industries and the aggregate economy. Moreover, such simplification is in-
nocuous for our purpose because our model intends to focus on the medium-run cycles
and long-run growth rather than short-run dynamics at the business-cycle frequencies.

Now we formally define the optimal steady-state:

Definition 1. The optimal steady state is the equilibrium of the following economy: technologies
are given by (3) and (4); the factor endowment vector is given by (Ω, Ll, Lh), where Ω denotes
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the capital flow devoted to the production of consumption goods, Ll and Lh denote experienced

and inexperienced workers respectively; fraction f̂
f̂+δ̂

of all experienced workers are employed in

industries 0,1,2; of all inexperienced workers, fraction f̂
f̂+δ̂

are employed in industries 0 and 1

and fraction π f̂
π f̂+δ̂

are employed in industry 2. The output of final consumption commodity is
maximized given the factor endowment vector and technologies.

The following lemma states that the dynamic optimization problem degenerates to
static optimization at each instant.

Lemma 1. For an instantaneous equilibrium (where f = κ f̂ , δ = κδ̂, and κ → ∞), dynamic
optimization requires that the economy is at an optimal steady state at each instant t if ξ < ξ̄

with ξ̄ ≡ mint∈[0,T]{
e−ρtC(t)−σ

µe(t)
( π f̂+δ̂

π f̂+πδ̂
+ a(λ − 1) − λ2)}, where µe(t) denotes the value to

become an experienced worker and T is the last time point when the output of final consumption

good is equal to λ2 f̂
f̂+δ̂

L.

Proof. see Appendix B.2.

When the job finding rate f and separation rate δ are sufficiently large, both em-
ployment and unemployment reach the steady state almost immediately. Dynamic op-
timization requires that labor markets adjust efficiently to reduce the amount of capital
flow used for producing consumption goods. It is equivalent to finding an optimal
steady-state equilibrium to produce the required amount of consumption goods with
the minimum amount of capital flow. The condition ξ < ξ̄ is to ensure that the current
benefit of capital flow reduction outweighs the future benefit of experience accumula-
tion for inexperienced workers in industry 2. Mismatch must be sufficiently mild (i.e.,
π is large) so that inexperienced workers have sufficient incentives to enter industry 2.

For later references, we collect all the assumptions on the model coefficients and la-
bel them as Assumption 1.
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Assumption 1: The following conditions are satisfied:

(i) 0 < A − ρ < σA;

(ii) f = κ f̂ , δ = κδ̂, κ → ∞;

(iii) ξ < ξ̄;

(iv)
π f̂

π f̂ + δ̂
> (

1
λ
+

1
a
)

f̂
f̂ + δ̂

To derive the optimal dynamic path, we must first characterize the optimal steady
state, that is, we must solve the following problem:

C = max
Ei

j,Kj

{(El
0 + Eh

0) + λ min{El
1 + Eh

1 ,
K1

a
}+ λ2 min{El

1 + El
2,

K2

a2 }+ λ3 K3

a3 } (15)

subject to
K1 + K2 + K3 ≤ Ω, (16)

El
0

f̂ + δ̂

f̂
+ El

1
f̂ + δ̂

f̂
+ El

2
π f̂ + δ̂

π f̂
≤ Ll, (17)

and (
Eh

0 + Eh
1 + Eh

2

) f̂ + δ̂

f̂
≤ Lh. (18)

Note that (16)-(18) are the resource constraints for capital, inexperienced workers and

experienced workers, respectively. In particular, El
0

f̂+δ̂

f̂
inexperienced workers must be

allocated to industry 0 in order to have El
0 inexperienced workers employed in that

industry in the instantaneous equilibrium. The second term on the left-hand side in
(17) is the amount of inexperienced workers allocated to industry 1. The third term is
the amount of inexperienced workers allocated to industry 2, where mismatch occurs.
Observe that ξ does not show up in the above optimization problem because it takes
time for inexperienced workers to become experienced, and Assumption 1 ensures that
labor markets adjustment (i.e., sectoral employment and unemployment of both inex-
perienced and experienced workers) reach the instantaneous equilibrium steady state
before the factor endowment vector (Ω, Ll, Lh) changes. The following proposition fully
characterizes the optimal steady state:

Proposition 2. Under Assumption 1, in the optimal steady state equilibrium with given capital
endowment for consumption production Ω, endowment of inexperienced labor Ll and experi-
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enced labor Lh, the labor allocation is summarized in Table 2.1. 4

Table 2.1: optimal steady state equilibrium

(1). 0 ≤ Ω < a f̂
f̂+δ̂

(Lh + Ll) (2). a f̂
f̂+δ̂

(Lh + Ll) ≤ Ω < f̂
f̂+δ̂

(aLl + a2Lh)

C = λ−1
a Ω + f̂

f̂+δ̂
(Lh + Ll) C = λ2−λ

a2−a Ω + λ(a−λ)
a−1

f̂
f̂+δ̂

(Lh + Ll)

El
0 + Eh

0 = f̂
f̂+δ̂

(Lh + Ll)− Ω
a El

0 = 0, Eh
0 = 0

El
1 + Eh

1 = Ω
a El

1 = f̂
f̂+δ̂

Ll , Eh
1 =

a2 f̂
f̂+δ̂

(Lh+Ll)−Ω

a2−a − f̂
f̂+δ̂

Ll

El
2 = 0, Eh

2 = 0 El
2 = 0, Eh

2 =
Ω−a f̂

f̂+δ̂
(Lh+Ll)

a2−a

(3). f̂
f̂+δ̂

(aLl + a2Lh) ≤ Ω < a2( π f̂
π f̂+δ̂

Ll + f̂
f̂+δ̂

Lh) (4). Ω ≥ a2( π f̂
π f̂+δ̂

Ll + f̂
f̂+δ̂

Lh)

C =
λ2 π f̂

π f̂+δ̂
−λ

f̂
f̂+δ̂

a2 π f̂
π f̂+δ̂

−a f̂
f̂+δ̂

Ω + f̂
f̂+δ̂

λ(a−λ)

a π f̂
π f̂+δ̂

− f̂
f̂+δ̂

( π f̂
π f̂+δ̂

Ll + f̂
f̂+δ̂

Lh) C = λ3

a3 Ω − λ2(a−λ)
a ( π f̂

π f̂+δ̂
Ll + f̂

f̂+δ̂
Lh)

El
0 = 0, Eh

0 = 0 El
0 = 0, Eh

0 = 0

El
1 = f̂

f̂+δ̂
(

a2(
π f̂

π f̂+δ̂
Ll+

f̂
f̂+δ̂

Lh)−Ω

a2 π f̂
π f̂+δ̂

−a f̂
f̂+δ̂

), Eh
1 = 0 El

1 = 0, Eh
1 = 0

El
2 = π f̂

π f̂+δ̂
(

Ω−a2 f̂
f̂+δ̂

Lh−a f̂
f̂+δ̂

Ll

a2 π f̂
π f̂+δ̂

−a f̂
f̂+δ̂

), Eh
2 = f̂

f̂+δ̂
Lh El

2 = π f̂
π f̂+δ̂

Ll , Eh
2 = f̂

f̂+δ̂
Lh

Proof. see Appendix B.3.

As implied by Table 2.1, when C ∈ [ f̂
f̂+δ̂

(Lh + Ll), λ
f̂

f̂+δ̂
(Lh + Ll)), only industry 0

and industry 1 coexist and no mismatch occurs, so the experience structure of the la-

bor force is irrelevant. When C ∈ [λ f̂
f̂+δ̂

(Lh + Ll), f̂
f̂+δ̂

(λLl + λ2Lh)), only industries 1

and 2 coexist, and all workers in industry 2 are experienced. When C ∈ [ f̂
f̂+δ̂

(λLl +

λ2Lh), λ2( π f̂
π f̂+δ̂

Ll + f̂
f̂+δ̂

Lh)), only industry 1 and industry 2 coexist, and all workers in

industry 1 are inexperienced. When C ∈ [λ2( π f̂
π f̂+δ̂

Ll + f̂
f̂+δ̂

Lh), ∞), only industries 2 and
3 coexist, and all workers are in industry 2.

4For future references, we also derive the required amount of capital inflow Ω as a function of C, Lh

and Ll , see table B.1 in Appendix B.3
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Observe that total consumption C as a function of Ω, Ll and Lh has different func-
tional forms in the above four different scenarios because of the endogenous differences
in the underlying industrial structures, which are in turn determined by the factor en-
dowment structure Ω, Ll and Lh. In particular, when f̂ → ∞ while keeping δ̂ < ∞,
there will be no mismatch and experience types will be irrelevant, which is exactly the
case in Ju et al. (2015), so Table 2.1 degenerates to the static equilibrium in Ju et al. (2015).

The optimal steady state equilibrium indicates that the required capital flows into the
consumption goods sector only depends on C(t), Ll(t) and Lh(t). The artificial social
planner’s dynamic problem can be rewritten as

max
C

∞∫
t=0

e−ρt C1−σ − 1
1 − σ

dt

s.t. K̇ = AK − Ω(C, Ll, L − Ll),

L̇l = −G(C, Ll, L − Ll),

where Ω(C, Ll, L − Ll) can be derived from Table 2.1 and is directly provided in table
B.1 in Appendix B.3, and G(C, Ll, L− Ll), which governs the evolution of inexperienced
unemployment, is given by:

G(C, Ll, L − Ll) =



0, C ∈ [0, C)

ξ
π f̂

π f̂+δ̂
(

C−λ2 f̂
f̂+δ̂

(L−Ll)−λ
f̂

f̂+δ̂
Ll

λ2 π f̂
π f̂+δ̂

−λ
f̂

f̂+δ̂

), C ∈ [C, C̄]

ξ
π f̂

π f̂+δ̂
Ll, C ∈ (C̄, ∞)

(19)

with C̄ ≡ λ2 f̂
f̂+δ̂

(L − Ll) + λ2π f̂
π f̂+δ̂

Ll, and C ≡ λ2 f̂
f̂+δ̂

(L − Ll) + λ f̂
f̂+δ̂

Ll. The current-value
Hamiltonian becomes

H =
C1−σ − 1

1 − σ
+ µ[AK − Ω(C, Ll, L − Ll)]− ΛG(C, Ll, L − Ll),

where Λ is the value of inexperienced workers minus the value of experienced workers,
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and it must be bounded and negative. The necessary optimality conditions are

µ̇ = (ρ − A)µ, (20)

C ∈ arg max{C1−σ − 1
1 − σ

+ µ(AK − Ω(C, Ll, L − Ll))− ΛG(C, Ll, L − Ll)}.

Thus when ξ is sufficiently small5 6,

C ≈ Ĉ ∈ arg max{C1−σ − 1
1 − σ

+ µ(AK − Ω(C, Ll, L − Ll))} (21)

Assume all workers are inexperienced at time 0, that is, Ll(0) = L. Since on-the-
job learning is the only way to become experienced workers, Ll(t) is always equal to
L before industry 2 emerges. We focus on the transition from industry 1 to 2 as mis-
match matters only after inexperienced workers begin to search in industry 2. Since
Ω(C, Ll, L − Ll) is a piece-wise linear function of C and µ decreases at a constant rate,
the economy goes through three stages: In stage I, all workers stay in industry 1. Con-
sumption remains constant, capital accumulates over time, and there is no mismatch.
In stage II, inexperienced workers in industry 1 move into industry 2. Some of them are
employed and become experienced workers via on-the-job learning. All experienced
workers stay in industry 2, and inexperienced workers in industry 1 gradually move
into this industry. Consumption increases at a constant rate. In stage III, all work-
ers stay in industry 2, consumption increases at a lower speed as more inexperienced
workers gradually become experienced, but industry 3 is still inactive at this stage.

Before stage II starts, there are no inexperienced workers in industry 2 so there is no
mismatch, the aggregate unemployment is the constant and equal to δ̂

f̂+δ̂
L. After stage II

starts, inexperienced workers move from industry 1 to industry 2 and suffer mismatch.
The aggregate unemployment is given by

U =
δ̂

f̂ + δ̂
L + (

δ̂

π f̂ + δ̂
− δ̂

f̂ + δ̂
)Ll

2 (22)

5In appendix B.8, it is shown that even for a large enough ξ, the numerical solution of the equilib-
rium path is almost the same as our analytical solution.

6When t is large, C(t) is larger than C̄. In this case, (21) is true without approximation as G(C, Ll , L −
Ll) = ξ

π f̂
π f̂+δ̂

Ll which is unrelated to C.
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where the first term on the right hand side, δ̂
f̂+δ̂

L, is the aggregate unemployment for

the whole economy when mismatch is absent, i.e., when Ll
2 = 0. It captures the fric-

tional unemployment resulting from labor market frictions in job search and job de-
struction. The second term is the extra amount of unemployment due to mismatch of
inexperienced workers in industry 2, so it captures structural unemployment resulting
from mismatch when workers move from industry 1 to industry 2 during the structural
change. Note that δ̂

f̂+δ̂
is the steady state unemployment rate without mismatch and

δ̂
π f̂+δ̂

is the steady state unemployment rate if all workers suffer from mismatch. The
gap between the aggregate unemployment rate and the steady state unemployment rate
without mismatch, U

L − δ̂
f̂+δ̂

, is referred to as the structural unemployment rate.

More precisely, after stage II starts, the labor market dynamics is characterized by
the following two equations:

El
2(t) =


N1gc

N2ξ+gc
(egc(t−t1) − e−N2ξ(t−t1))

e
− π f̂

π f̂+δ̂
ξ(t−t2,l) N1gc

N2ξ+gc
(egc(t2,l−t1) − e−N2ξ(t2,l−t1))

if
if

t1 < t ≤ t2,l

t > t2,l
(23)

and

Ll(t) =


−N1

N2(N2ξ+gc)
(ξN2egc(t−t1) + gce−N2ξ(t−t1)) + N1

N2
+ L

e
− π f̂

π f̂+δ̂
ξ(t−t2,l)

[ −N1
N2(N2ξ+gc)

(ξN2egc(t2,l−t1) + gce−N2ξ(t2,l−t1)) + N1
N2

+ L]

if
if

t1 < t ≤ t2,l

t > t2,l
(24)

where t1 denotes the time point when stage II starts, t2,l is the first time when all work-

ers search in industry 2.7 Observe that, when t1 < t ≤ t2,l,
dLl(t)

dt < 0 and dEl
2(t)
dt > 0;

after t2,l, all workers are in industry 2, both El
2(t) and Ll decrease exponentially because

of on-the-job learning.

Combining equations (22) to (23), we obtain the following proposition about how
the aggregate unemployment rate changes over time:

Proposition 3. The aggregate unemployment rate is constant at δ̂
f̂+δ̂

till time t1, after which
the aggregate unemployment exhibits a hump-shaped time path: it first rises due to mismatch
and then gradually declines because inexperienced workers gradually become experienced via
on-the-job learning.

7The definitions of other parameters are shown in the appendix.
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Proof. see Appendix B.4.

To understand the non-monotonic change in the aggregate unemployment rate more
intuitively, we plot its time path in Figure 2.2 (the solid curve) after the economy enters
stage II at time t1. The unemployment rate fluctuates endogenously mainly because
the number of inexperienced workers in industry 2 endogenously changes. Recall that
inexperienced workers in industry 2 suffer mismatch and hence a lower job finding
rate than experienced workers, but inexperienced workers could become experienced
through on-the-job learning. The number of inexperienced workers in industry 2, and
hence unemployment rate, first increases because workers move from industry 1 to 2 as
capital increases. It reaches the peak at time t2,l, when industry 1 just exits the market
and all workers in the economy are in the labor market for industry 2. Afterwards, the
number of inexperienced workers in industry 2 and the unemployment rate both de-
cline because of on-the-job learning. The unemployment rate eventually converges to

δ̂
f̂+δ̂

as all workers become experienced and mismatch disappears. Note that industry 3
does not hire labor, so all workers will stay in the labor market for industry 2 and never
leave. In other words, structural unemployment will eventually disappear and there
will be only frictional unemployment as labor relocation across industries stops.

Figure 2.2: Aggregate unemployment rate
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The following proposition summarizes some comparative static properties of the
dynamic equilibrium.

Proposition 4. The following three comparative static properties hold after time t1 in equilib-
rium: (i) when on-the-job learning efficiency ξ becomes larger, the aggregate unemployment rate
u becomes permanently lower at every time point and it reaches the peak later; (ii) when capital-
goods production efficiency A becomes larger, the unemployment rate u permanently becomes
higher permanently before reaching its peak, and the peak value is reached earlier; (iii) when
the mismatch-afflicted job finding rate becomes larger, i.e., π becomes larger with f given, the
unemployment rate u becomes lower permanently and it reaches the peak later.

Proof. see Appendix B.5.

The intuition for the above proposition is as follows:

(i) Learning efficiency When the learning efficiency ξ increases, inexperienced work-
ers turn into experienced more quickly, and therefore more workers have a higher job
finding rate, which results in a lower unemployment rate. In addition, as the number of
experienced workers increases, total employment in industry 2 also gradually increases,
so industry 2 can sustain a longer period of expansion, that is, t2,l is delayed. Figure B.1
plots how the time path of the aggregate unemployment rate changes when on-the-job
learning efficiency ξ increases.

(ii) Capital-goods production efficiency When capital-goods production efficiency A in-
creases, capital accumulates faster, driving a more rapid structural change from indus-
try 1 to more capital-intensive industry 2. As inexperienced workers rush into industry
2 more quickly, mismatch results in a higher unemployment rate. The peak value of the
unemployment rate also becomes higher, because workers on average have less time for
on-the-job learning before they have to move into industry 2. As inexperienced workers
move into industry 2 earlier and never leave afterwards, they also become experienced
earlier via on-the-job learning. The unemployment rate reaches the peak earlier because
the most capital-intensive industry 3 emerges earlier, which means that employment in
industry 2 reaches the peak at an earlier time. The unemployment rate reaches the peak
when the total employment in industry 2 reaches the peak, as shown in Figure B.2.

(iii) Mismatch When the mismatch-afflicted job finding rate is lower, i.e., π becomes
18



smaller, the aggregate unemployment rate becomes larger permanently and the peak
value also becomes higher. As inexperienced workers are less likely to get employed,
fewer of them have the opportunity to become experienced ones via on-the-job learning.
Thus the aggregate unemployment rate becomes higher even when all workers stay in
the labor market for industry 2. Since consumption growth rate remains unchanged,
industry 3 emerges earlier to support consumption growth as the maximum amount of
employment in industry 2 becomes lower. It implies that the unemployment rate starts
to decline at an earlier time. See Figure B.3.

3 The Infinite-Industry Model

While the simple four-industry model in Section 2 illustrates why the unemployment
rate may first rise and then decline during the industrial upgrading from industry 1 to
2, its limitations are also obvious. First, it cannot generate repeated cycles as we observe
in the real data because mismatch is only relevant for industry 2 by model construction.
Second, the life span of industry 2 is infinite because industry 3 needs no labor in the
production. Third, the model cannot produce endlessly repeated cycles of aggregate
unemployment rates together with sustained aggregate economic growth because the
number of industries within the consumption-goods sector is finite. In order to elimi-
nate these important limitations, we now consider an alternative model, in which every-
thing remains identical as before except that now there are countably infinite industries
within the consumption good sector and mismatch could occur in infinite industries.
We show that, despite of the seemingly unwieldy complexities of the dynamic problem,
we are still able to obtain the closed-form solution to analytically characterize the whole
dynamics of the infinite-industry model, including the recurrent cycles of aggregate un-
employment rates, finite life spans for all industries, and sustainable long-run economic
growth.

The final consumption good is now produced with the following technology:

X =
∞

∑
n=0

xn, (25)

19



where intermediate good xn is produced with the following Leontief technology:

Fn(k, l) =

{
l
λn min{ k

an , l}
if
if

n = 0
n ≥ 1

(26)

Following Ju et al. (2015), we impose a − 1 > λ > 1 to rule out the trivial case that only
the most capital-intensive good is produced. Like in the finite-industry model, workers
seeking jobs in industry 0 or 1 do not suffer mismatch, and their job finding rate is f .
Mismatch takes place only in industries j ≥ 2. Experience is industry-specific. Workers
become inexperienced and face a low job finding rate, π f with 0 < π < 1, when they
enter a new industry. After she is employed in the new industry, she might become
experienced through on-the-job learning and then face a higher job finding rate f after-
wards in this industry if she loses her job. Job separation rates are δ in all industries,
independent of experience types of workers. A representative household is initially en-
dowed with capital K(0) and labor L, and all labor is inexperienced initially for any
industry j, j ≥ 2. The household’s preference is still given by (5). Figure 3.1 summa-
rizes the model environment for the consumption good sector with infinite industries.
In our appendix, we also consider differences of labor productivity for different skilled
workers.

Figure 3.1: Environment in consumption good sector with infinite industries

Assumption 2: The following conditions are satisfied:

(i) f = κ f̂ , δ = κδ̂, κ → ∞;

(ii) 0 < A − ρ < σA;

(iii) ξ < ξ̄ in f ;

(iv)
π f̂

π f̂ + δ̂
>

a + λ

aλ + 1
f̂

f̂ + δ̂
.

Assumption 2 serves four purposes: Condition (i) ensures that labor reallocation is
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sufficiently fast so we could sharpen the analysis by focusing on the instantaneous equi-
librium for the otherwise unwieldy dynamic problem; with condition (ii) the long-run
growth rate is strictly positive but not explosive; condition (iii) ensures that the on-the-
job learning efficiency is small enough so that the planner wants to minimize the flow
of capital used for producing the consumption good at each instant; and condition (iv)
ensures that mismatch is sufficiently mild, or equivalently, π is sufficiently large, so that
workers have no incentives to skip any industry, say, directly move from industry j to
industry j + 2.8

We characterize the industrial dynamics by forward induction. The step-by-step in-
dustrial upgrading process, from industry 0 first to industry 1, and then to industry
2, till all workers are in industry 2, is identical to that in the finite-sector model. But
afterwards, the economy repeatedly goes through four stages for each upgrading pro-
cess from industry n to industry n + 1. We summarize this pattern in the following
proposition.

Proposition 5. In equilibrium, the industrial upgrading process from industry n to industry
n + 1 (n ≥ 2) experiences four stages:

• at stage I, all workers stay in the labor market for industry n, aggregate consumption
grows at a strictly positive speed lower than gc;

• at stage II, inexperienced workers in industry n gradually move into industry n + 1, con-
sumption grows at speed gc;

• at stage III, all the experienced workers in industry n stay in industry n, and consumption
grows at a rate which is strictly positive but smaller than gc;

• at stage IV, experienced workers in industry n gradually move into industry n + 1, the
consumption grows at speed gc.

Proof. see Appendix B.6.

8Notice that conditions (i) and (ii) are identical to those in Assumption 1 in the finite-industry model,
but conditions (iii) and (iv) are different from their counterpart in Assumption 1.
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Figure 3.2: Consumption growth rate at four stages

At stage I, all employed workers stay in industry n and all unemployed workers
seek jobs in industry n. There is no industrial upgrading or structural change at this
stage, but capital accumulates and its shadow price declines over time. Some inexpe-
rienced workers in industry n gradually become experienced via on-the-job learning,
so more and more workers are employed and we have a strictly positive consumption
growth rate due to the employment increase. But the aggregate consumption growth
rate is lower than gc. At stage II, the industrial upgrading takes place. Inexperienced
workers in industry n move into n + 1, while all experienced workers still stay in the
labor market for industry n, employed or not. Aggregate consumption grows at speed
gc. The number of employed workers increases in both industry n and industry n + 1
because more and more inexperienced workers become experienced through on-the-
job learning in both industries. This process continues till no inexperienced workers
are employed in industry n and no inexperienced workers search for jobs in industry
n. At stage III, all inexperienced workers have left industry n, and those who are ei-
ther employed industry n + 1 or looking for jobs in industry n + 1 are all experienced
workers, and no workers move across industries ,that is, industrial upgrading pauses.
Inexperienced workers in industry n + 1 gradually become experienced and the aggre-
gate consumption grows at a strictly positive rate but still lower than gc.9 At stage IV,

9Stages I and III are the phases during which no workers in the labor market for industry n, inexpe-
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experienced workers in industry n move into n + 1, and this stage ends when all work-
ers have entered the labor market for industry n + 1, employed or unemployed. This
four-stage process continues repetitively.10 The explicit analytical solutions to this dy-
namic optimization problem are shown in details in Appendix B.6.

Let tall
n , tl

n+1, tall high
n , th

n+1 denote the first time when all workers stay at industry n,
when inexperienced workers in industry n begin to move into n + 1, when all workers
in industry n are experienced, and when experienced workers in industry n begin to
move into n + 1. So stage I is the period t ∈ [tall

n , tl
n+1), stage II is t ∈ [tl

n+1, tall high
n ),

stage III is t ∈ [tall high
n , th

n+1), and stage IV is t ∈ [th
n+1, tall

n+1).

Proposition 6. The numbers of inexperienced and experienced workers in the economy change
in the following fashion when the economy undergoes structural change from industry n to
industry n + 1 (n ≥ 2):

• at stage I, the number of inexperienced workers in industry n decreases, and the number
of experienced workers in industry n increases because of on-the-job learning;

• at stage II, the number of inexperienced workers in industry n decreases, while experienced
workers in industry n increases; the number of both experienced and inexperienced workers
in industry n + 1 increases because of on-the-job learning and labor reallocation across
industries;

• at stage III, there are no inexperienced workers working or looking for jobs in industry
n, and the number of experienced workers stays constant in industry n; the number of
inexperienced workers in industry n + 1 decreases and that of experienced workers in
industry n + 1 increases because of on-the-job learning;

• at stage IV, the number of experienced workers in industry n decreases, but the number of

rienced or experienced, employed or unemployed, leave for the labor market of industry n + 1. Both
of these two phases last for some period so that the relative rental price of capital changes continu-
ously, otherwise the relative rental price of capital would exhibit discontinuity as the marginal cost of
consumption in terms of capital in the consumption-good sector exhibits discontinuity when the un-
derlying industrial composition shifts between single industry and two neighboring industries. See
Appendix B.6 for details.

10The model result that inexperienced workers leave a sunset industry earlier than experienced ones
during industrial upgrading is consistent with data. Using PSID data, we find that workers who change
sectors have an average working experience of 2.74 years in the old sector, significantly smaller than
4.10, the average experience of workers who stay. See Appendix A for details.
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experienced and that of inexperienced workers in industry n + 1 both increase because of
on-the-job learning and labor reallocation across industries.

Proof. see Appendix B.6.

Figure 3.3 shows the cyclical pattern in the numbers of inexperienced and experi-
enced labor force (employed plus unemployed), in the labor market for each industry. 11

We analytically prove that both the size of the experienced labor force in the labor mar-
ket for industry n + 1 (denoted by Lh

n+1) and the size of the inexperienced counterpart
(denoted by Ll

n+1) are increasing over time when t ∈ [tl
n+1, tall high

n ), because inexperi-
enced workers in the labor market for industry n move into that for industry n + 1 and
some of them become experienced. When t ∈ [tall high

n , th
n+1), no workers move across la-

bor markets for different industries and Lh
n+1 increases, but Ll

n+1 decreases as some inex-
perienced workers become experienced with the total number of labor force (employed
plus unemployed) for industry n + 1 remaining unchanged. When t ∈ [th

n+1, tall
n+1), both

Lh
n+1 and Ll

n+1 increase over time, because experienced workers in industry n move into
industry n + 1 and immediately become inexperienced, but some of them get employed
and become experienced in industry n + 1. When t ∈ [tl

n+2, tall high
n+1 ), industry n has ex-

ited and inexperienced workers in industry n+ 1 either move into industry n+ 2 or stay
and become experienced in n + 1. So Ll

n+1 decreases over time and Lh
n+1 increases over

time at this stage. When t ∈ [th
n+2, tall

n+2), experienced workers in industry n + 1 move
into industry n + 2, and industry n + 1 gradually declines and eventually disappears at
time tall

n+2. As we see from Figure 3.3 and figures below, the industrial upgrading from
industry 1 to industry 2 is slightly different from those from industry n to industry n+ 1
(n ≥ 2). It is because we assume all workers face the same job finding rate f in industry
1 so experience types are irrelevant but the job finding rates are different for workers of
different experience types in any industry n for n ≥ 2.

11We set the coefficient of relative risk aversion 1/σ = 1, discount rate ρ = 0.9, the capital intensity
coefficient a = 3.5, the productivity coefficient λ = 2.0, the capital-goods production efficiency A =

1, two unemployment rates f̂
f̂+δ̂

= 1
3 and π f̂

π f̂+δ̂
= 2

5 , and the learning rate ξ = 0.2. It is mainly for

illustration purposes instead of attempting to quantitatively match the real-life data.
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Figure 3.3: Inexperienced and experienced workers in each industry

Figures 3.4 shows the dynamics of employment and unemployment within each in-
dustry. The employment of an industry reaches its peak when all labor force is in the
labor market for that industry. Figure 3.5 shows how the unemployment rate in the la-
bor market for industry n changes over time during the whole life span of this industry.
Recall tl

n is the time point when industry n just emerges, and the unemployment rate in
industry n is equal to δ̂

π f̂+δ̂
. From tl

n to tallhigh
n−1 (i.e., stage II), inexperienced workers in

industry n − 1 gradually move into industry n, and the industrial unemployment rate
in industry n declines as the share of inexperienced workers gradually decreases via on-
the-job learning. At stage III, when there is no industrial upgrading, the unemployment
rate in industry n keeps declining due to on-the-job learning. At stage IV, when experi-
enced workers in industry n − 1 move into n, the unemployment rate can either decline
or increase, depending on the duration of stage III. If it is short (e.g., when π is close to
1), then the share of inexperienced workers in industry n remains large, and the indus-
trial unemployment rate declines over time. If stage III lasts long (e.g., when π is small),
then the share of inexperienced workers is small, so the reallocation process in stage IV
drives up the share of inexperienced workers in industry n, and the unemployment rate
for industry n increases. At time point tall

n , all labor force of the economy is the in the
labor market for industry n. From that point to tl

n+1 the industrial unemployment rate
keeps declining, as inexperienced workers in industry n either become experienced or
move into n + 1.
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Figure 3.4: Employed and unemployed workers in each industry

Figure 3.5: Industrial unemployment rate for labor market of industry n

Before moving to present other results of the model, we briefly discuss the empiri-
cal relevance of the analysis above regarding sectoral employment and unemployment
during industrial upgrading. The theory implies that when a new sector emerges and
expands, new and inexperienced workers enter into this sector. The job finding rate is
low and unemployment rate is high. The opposite holds for declining sectors. Put it dif-
ferently, the model implies a positive correlation between sectoral employment change
and sectoral unemployment rate, and a negative correlation between sectoral employ-
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ment change and sectoral job finding rate. We collect data from Current Population
Survey and Bureau of Labor Statistics and show in Appendix A that both correlations
are consistent with data.

We now analyze the model implications on industry life span. As seen in Figure 3.4
the life span of industry n, n ≥ 2, converges. This is due to the symmetric structure
of industrial upgrading. The life span of industry n equals to tall

n+2 − tl
n+1, the length

between the time point when the first inexperienced worker appears in that industry,
tl
n+1, and the time point when the last experienced worker leaves that industry, tall

n+2.
When ξ is small, we have the following result:

Proposition 7. If ξ converges to 0, the life span of an industry in the long run is

lim
ξ→0
n→∞

(tall
n+2 − tl

n+1) =
2 log(λ)

gc
+

2log( a
λ )

A − ρ
−

log( a(a−1)
λ(λ−1)

λ
π f̂

π f̂+δ̂
− f̂

f̂+δ̂

a π f̂
π f̂+δ̂

− f̂
f̂+δ̂

)

A − ρ
, (27)

which implies that more serious mismatch (smaller π) results in a longer industry life span.

Proof. see Appendix B.6.
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Figure 3.6: The life span of industries under different degrees of mismatch

Figure 3.6 shows how the life span of industry n changes with the degree of mis-
match, π, fixing all other parameters. We also add the graph for ξ = 5.0 where workers
have a much faster on-the-job learning rate. The numerical exercise suggests that even
for a large learning rate, the industries will exist for a longer time when the mismatch
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becomes severer. The reason why the industry has a larger life span is that mismatch
makes experienced workers in the old industries reluctant to move into the new indus-
tries as they have a lower job finding rate in these industries. They are stuck in the old
industries. The red line in Figure 3.6 computes the difference of the upgrading time
for two types of workers th

n+1 − tl
n+1, which is also the difference of the time when the

industry n + 1 emerges and when the first experienced workers in industry n move
into industry n + 1. Larger th

n+1 − tl
n+1 indicates that experienced workers in the old

industries wait longer before they move into the new industries compared with the in-
experienced ones, and it consequently extends the life cycle of industries.

We next investigates the dynamics of employment and unemployment. The time
path of aggregate unemployment satisfies:

(i) if tall
n ≤ t < th

n+1,

U(t) = (
δ̂

π f̂ + δ̂
− δ̂

f̂ + δ̂
)e

− π f̂
π f̂+δ̂

ξ(t−tall
n )

Ll
n(t

all
n ) +

δ̂

f̂ + δ̂
L (28)

(ii) if th
n+1 ≤ t < tall

n+1

U(t) =
1 − π

π

δ̂

f̂ + δ̂
[

Qngc

N2ξ + gc
egc(t−th

n+1) − (
Qngc

N2ξ + gc
− π f̂

π f̂ + δ̂
Ll

n+1(t
h
n+1))e

−N2ξ(t−th
n+1)] +

δ̂

f̂ + δ̂
L (29)

As shown in Appendix B.6, aggregate unemployment decreases during the period
t ∈ [tall

n , th
n+1). For t ∈ [tall

n , tl
n+1) ∪ [tall high

n , t < th
n+1), there is no industrial upgrading,

and the aggregate unemployment rate declines as inexperienced workers in industry
n or in both industries n and n + 1 gradually become experienced ones via on-the-job
learning. For t ∈ [tl

n+1, tall high
n ), inexperienced workers in industry n move into n + 1,

and since they are inexperienced in both industries, this reallocation of workers does
not increase the mismatch. As a result, the aggregate unemployment keeps declining
as inexperienced workers in industries n and n + 1 continue to become experienced at
this stage. The aggregate unemployment rate rises for t ∈ [th

n+1, tall
n+1) as experienced

workers in industry n move into n + 1 and they become inexperienced which causes
more mismatch. It increases and reaches its peak at tall

n+1, the first time when all work-
ers stay all industry n + 1. After that, aggregate unemployment declines again in the
period t ∈ [tall

n+1, th
n+2), so on and so forth. As a result, the aggregate unemployment

rate exhibits a cyclical pattern along with industrial upgrading in the aggregate growth
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path. Note the unemployment rate cycle is not caused by any exogenous aggregate
shocks, but rather by the cyclicality in the number of inexperienced workers resulting
from two processes: the experience-to-inexperience transition associated with the labor
reallocation process, and the inexperience-to-experience transition through on-the-job
learning. Formally, we have the following proposition regarding the cyclical pattern of
unemployment rate:

Proposition 8. The aggregate unemployment rate in the infinite-industry model exhibits a re-
current cyclical pattern: it increases when experienced workers in an old industry move into the
new industry and decreases at all the other stages.

Proof. see Appendix B.6.

Figure 3.7 illustrates this cyclical pattern of aggregate unemployment rate.

Figure 3.7: Cyclical hump-shaped pattern of aggregate unemployment rate

Next we investigate the impact on aggregate unemployment of changes in param-
eters. Particularly, we are interested in the following three parameters: the degree of
mismatch π, the on-the-job learning rate ξ, and the capital-goods production efficiency
A. The next proposition summarizes the comparative static results.
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Proposition 9. When the labor market mismatch becomes severer, or the on-the-job learning
rate decreases, or the capital-goods production efficiency increases, both the peak and bottom
values of the aggregate unemployment rate become larger.

Proof. Please see Appendix B.6.

This proposition can be more intuitively seen in Figure 3.8. When mismatch becomes
severer, the aggregate unemployment rate increases faster and reaches larger peak and
bottom values within each industrial upgrading as inexperienced workers has lower
job finding rate, and have less chance to be employed to become experienced ones.
When the learning rate increases, employed inexperienced workers quickly become ex-
perienced and their job finding rate increases. So the aggregate unemployment rate
shifts downwards. When the capital-goods production efficiency increases, industrial
upgrading takes place more rapidly which results in larger reallocation and leads to
greater aggregate unemployment rate. Figure 3.8 illustrates how changes in mismatch
π, learning efficiency ξ and the capital-goods production efficiency A affect the aggre-
gate unemployment rate.

Figure 3.8: The comparative statics of the aggregate unemployment rate and consump-
tion
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4 Conclusion

In this paper, we develop a highly tractable dynamic model with infinite industries to
explore how frictional labor markets affect industry dynamics and aggregate economic
growth and how the labor market performs in the context of industry dynamics. We
are able to obtain a closed-form solution to fully characterize the aggregate growth, life-
cycle dynamics of each of the infinite industries, as well as equilibrium unemployment
rates. We show that in equilibrium the aggregate unemployment rate exhibits a cyclical
pattern as the economy repeatedly undertakes structural changes driven by endoge-
nous capital accumulation. The aggregate unemployment rate exhibits a hump-shaped
pattern: it rises at the beginning when experienced workers in a sunset industry move
into a sunrise industry and suffers from mismatch in the new industry. The unemploy-
ment rate declines later on when inexperienced workers become experienced through
on-the-job learning in the new industry. The unemployment rate goes up again as the
current new industry gradually declines and is eventually replaced by an even more
capital-intensive industry, ad infinitum.

We find that there exist three critical forces: capital-goods production efficiency, on-
the-job learning efficiency and labor market mismatch. When the capital-goods produc-
tion efficiency is larger, the consumption growth rate is higher, the speed of old indus-
tries being replaced by new ones faster, industry life span shorter, and the aggregate
unemployment rate universally higher. When learning efficiency increases, the aggre-
gate unemployment rate shifts downward and the life span of an industry becomes
shorter. In addition, severer mismatch drives up the aggregate unemployment rate and
extends the life span of an industry. We made necessary simplifications to analytically
characterize the impact of various economic forces on industrial dynamics and aggre-
gate unemployment rate. A quantitative evaluation of these forces with an extended
model is a natural extension of the current work, which we leave to future research.
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Online Appendix of “Industrial Upgrading and Economic
Growth with Labor Market Frictions”

Appendix A Data and Facts

Cross time correlation between unemployment rate and sector reallocation rate Fol-
lowing Lilien (1982), we measure the cross-sector employment reallocation rate the stan-
dard deviation of sector employment growth rate. In particular, denote eit employment
of sector i in year t, and git ≡ eit−eit−1

eit−1
the growth rate of sector i′s employment from year

t − 1 to t. The sector reallocation rate is defined as

Reallocationt ≡ {∑
i

ωi(git − ∑
i

ωigit)
2}1/2

where ωi is the weight for sector i. In the baseline, we choose sector i′s employment
share in period t as the weight, i.e. ωi =

eit
∑
i

eit
. As a robustness check, we further use

the employment share in the previous period as weight, ωi =
eit−1

∑
i

eit−1
, and calculate the

unweighted standard deviation, equivalently ωi = 1.12 Figure A.1 plots the such mea-
sured sector reallocation rate. and the aggregate unemployment rate in the US from
1955 to 2020.13

To formally test the correlation between sector reallocation rate, Reallocationt, and
unemployment rate, UNRATEt, we use the time series data from 1955-2020 and run the
following regressions

UNRATEt = β0 + β1 ∗ Reallocationt + Ctrls + ϵt

Two controls are added in the regression: a recession dummy and a dummy for the
post-2001 period to account for the fact that the sector code in the original data switches
from SIC to NAICS after 2001. Table A.1 presents the regression results under differ-

12The sector employment data is from the National Income and Product Accounts provided by U.S.
Bureau of Economic Analysis. The tables used are ”Table 6.8 Persons Engaged in Production by Indus-
try”, which contain employment for 63 3-digit SIC sectors from 1948-2000 and for 70 3-digit NAICS sec-
tors from 1998-2020.

13The Bureau of labor statistics provides sectoral employment and unemployment from 2002-2021, as
detailed below. We obtain sectoral labor force by adding these two items, and calculate the reallocation
rate using sectoral labor force instead of employment. The correlation coefficient between labor force
and employment based reallocation rate is as high as 0.9984.
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Figure A.1: US Unemployment Rate and Sector Reallocation Rate: 1955-2020

Note: Sector reallocation rate is measured as the standard deviation of annual employment growth rates
across sectors.

ent settings. The coefficient for reallocation is positive and significant under the baseline
measurement. An increase of 1 percentage point in sector reallocation rate leads to 0.55
percentage point increase in the aggregate unemployment rate. The sign and signifi-
cance hold if the recession dummy (and the post-2001 dummy) is added, suggesting
that the positive correlation between sector reallocation rate and unemployment rate
are not driven by recession points only. Further, the baseline result is robust to alterna-
tive measures of sector reallocation rate, as seen in regression results (2) and (3) in Table
A.1.
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Table A.1: Correlation between Unemployment Rate and Cross-
Sector Employment Reallocation Rate

(1) (2) (3)
wgt.=empt wgt.=empt−1 unweighted

Reallocation 0.55∗∗∗ 0.59∗∗ 0.53∗∗∗ 0.57∗∗∗ 0.30∗∗ 0.26∗

(0.19) (0.22) (0.19) (0.21) (0.13) (0.13)
Recession D N Y N Y N Y
Post2001 D N Y N Y N Y

R2 0.11 0.14 0.11 0.14 0.08 0.10
Obs. 66 66 66 66 66 66

Note: This table show the results of regressing unemployment
rate on cross-sector employment reallocation rate from 1955-
2020.

Sector Reallocation and Worker Experience Sector reallocation in the aggregate is
composed of workers’ sector movement at the individual level. An average worker
typically stays in a sector for finite years. For example, in 2013, the average years a
worker has worked in their 2013 3-digit sector is 10 years.14 Experience is an impor-
tant factor in determining if a worker switches sectors. Particularly, less experienced
workers are more likely to move to a new sector, as shown in Table A.2. From 1999-
2019, workers who changed sectors from sector A to sector B in year (t, t + 2] have, in
average, worked in sector A for 2.74 years until year t, while those who did not have
an average working experience of 4.10 years, which is about 50% longer than the first
group. This is consistent with the model result that inexperienced workers move out of
an old industry earlier than experienced ones during industrial upgrading.

14For all workers in a given sector in PSID 2013, we calculate the average years these workers stay in
their 2013 3-digit sector, and then average them into the sector level. Figure A.2 plots the distribution of
this average working time across all 3-digit sectors.
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Figure A.2: Distribution of Average Years a Worker Stays in a Sector

Table A.2: Average Working Experience

Working experience until year t

Workers who change sectors in years (t,t+2] 2.74
Workers who do not change sectors in year (t,t+2] 4.10

Data Source: PSID 1999-2019. This table shows the average working years until
year t in a sector between those who changed to a different sector in year (t, t + 2]
and those who did not.

Sectoral Employment Change, Job Finding Rate and Unemployment Rate The model
implies a positive correlation between sectoral employment change rate (EC) and sec-
toral unemployment rate (UN), and a negative correlation between sectoral employ-
ment change and sectoral job finding rate (JF). We now examine if these results are
supported by data. The U.S. Bureau of labor statistics provides unemployment rate for
55 3-digit sectors from 2003-2021, with unemployment in a sector i and year t referring
to those who are unemployed in year t and whose last job was in sector i. We define
employment change rate (EC) of sector i in year t as the relative change of that sector’s
employment from year t − 1 to t. Job finding rate (JF) in sector i and year t is defined as
the ratio of ”number of persons who is unemployed in sector i and year t, and employed in year

4



t + 1” to ”number of persons who is unemployed in sector i and year t”.15 Figure A.3 plots
the such measured correlations across the 55 sectors from 2003-2021. Consistent with
the model implication, at the sector level, job finding rate and employment change rate
show a clear negative correlation, while unemployment rate and employment change
rate show a positive correlation.
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Figure A.3: Correlation between Sectoral Employment Change and Sectoral Job Find-
ing Rate & Unemployment Rate

The figure plots the unemployment rate (vertical) v.s. the relative change in employment across 55 sec-

tors annually from 2003-2021. Unemployment in a sector refers to the unemployed whose last job was

in the given sector.

More formally, we run the following regressions

Yi,t = β0 + β1 ∗ ECi,t + industry + year + ϵi,t, Y ∈ {JF, UN}

Table A.3 shows the regression results and confirms that the correlations in Figure
A.3 are robust to controlling for sector and time fixed effects.

15The data source for calculating sectoral job finding rate is Current Population Survey (CPS). We
manually match the CPS 4-digit industry code to BLS sectors based on sector names.
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Table A.3: Correlation between Job Finding Rate, Un-
employment Rate and Sector Employment Change

Dep. var: JFit Dep. var: UNit

(1) (2) (1) (2)

ECit −0.043∗∗∗ −0.027∗∗ 0.025∗∗∗ 0.026∗∗∗

(0.009) (0.012) (0.002) (0.001)
Sector FE N Y N Y
Year FE N Y N Y

R2 0.03 0.32 0.14 0.84
Obs. 863 863 1086 1086

Note: See the text above for definitions of depen-
dent and independent variables. The sample covers
55 3-digit sectors annually from 2003 to 2021.
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Appendix B Derivation and Proofs

B.1 Proof of proposition 1

Planner’s Problem: We start by setting the Hamiltonian for the planner’s problem

H = e−ρt C1−σ − 1
1 − σ

+µk[AK−Ω(C, El
0 +Eh

0 , El
1 +Eh

1 , El
2 +Eh

2)]+ ∑
i=l,h

µi
0[ f Ui(1−λi

1 −λi
2)− δEi

0]

+ ∑
i=l,h

µi
1( f Uiλ

i
1 − δEi

1) + µl
2(π f Ulλ

l
2 − δEl

2 − ξEl
2) + µh

2( f Uhλh
2 − δEh

2 + ξEl
2)

+ µl
u[− f Ul(1 − λl

2)− π f Ulλ
l
2 + δ(El

0 + El
1 + El

2)] + µh
u[− f Uh + δ(Eh

0 + Eh
1 + Eh

2)] (30)

where µk, µi
j, and µi

u are the multipliers associated with capital constraint, associated
with i−experience-typed employees in industry j, and associated with unemployment
of iexperience-typed workers, respectively. The first-order conditions are

µ̇k = −Aµk (31)

− µ̇i
0 = −δµi

0 + δµi
u − µk

∂Ω
∂Ei

0
, i ∈ {l , h} (32)

− µ̇i
1 = −δµi

1 + δµi
u − µk

∂Ω
∂Ei

1
, i ∈ {l , h} (33)

− µ̇l
2 = −(δ + ξ)µl

2 + δµl
u + ξµh

2 − µk
∂Ω
∂El

2
, (34)

− µ̇h
2 = −δµh

2 + δµh
u − µk

∂Ω
∂Eh

2
, (35)

− µ̇l
u = f (1 − λl

1 − λl
2)(µ

l
0 − µl

u) + f λl
1(µ

l
1 − µl

u) + π f λl
2(µ

l
2 − µl

u), (36)

− µ̇h
u = f (1 − λh

1 − λh
2)(µ

h
0 − µh

u) + f λh
1(µ

h
1 − µh

u) + f λh
2(µ

h
2 − µh

u), (37)

e−ρtC−σ = µk
∂Ω
∂C

, (38)

∂H
∂λi

1
= f Ui(µ

i
1 − µi

0), i ∈ {l , h} (39)

∂H
∂λl

2
= f Ul[π(µl

2 − µl
u)− (µl

0 − µl
u)], (40)
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∂H
∂λh

2
= f Uh(µ

h
2 − µh

0). (41)

Decentralized Equilibrium: We then characterize the decentralized economy. The
representative household has a continuum of members. Some of them are employed,
and they are employed in different industries. Some household members are unem-
ployed. The household can invest their capital K(t) to receive r(t)K(t) capital goods.
Let q(t) denote the price of consumption good in units of the capital good. The house-
hold can sell one consumption good to receive q(t) units of capital good. Employed
workers of experience type i, i = {h, l}, in industry j, receive wage payment q(t)wi

j(t).
The representative household’s problem is

max
∞∫

t=0

e−ρt C1−σ − 1
1 − σ

dt (42)

subject to the budget constraint

K̇ = rK + q( ∑
i∈{l,h},j∈{0,1,2}

wi
jE

i
j − C). (43)

where Ei
j is again the measure of employed i-experience-typed workers in industry j.

Given equilibrium prices {r(t), q(t), wi
j(t)}, the household chooses consumption C(t)

and the fraction of unemployed workers searching in different industries λi
j. The evo-

lution of employed and unemployed workers is the same as Equations (7)-(14).

Firms in the capital goods sector borrow capital at the rental price r(t), and access to
a linear production technology, AK(t). Firms producing the final consumption good use

intermediate goods as inputs, and the production function is X =
3
∑

j=0
xj. Let qj(t) denote

the price of intermediate goods j. The profit of firms producing the final consumption
good is

q(t)
3

∑
j=0

xj −
3

∑
j=0

qj(t)xj.

Firms in industry j produce intermediate goods with a constant return to scale tech-
nology, Fj(k, l). They post vacancies at zero cost. Firm matched with workers purchase
capital from households and make wage payment, qj(t)wi

j(t), to employed workers.
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Their profit function, πj(k, l), is

πj(k, l) = qj(t)Fj(k, l)− k − q(t)wi
j(t)l.

We check that when the market prices satisfy q = qj = ∂Ω
∂C , ∀j ∈ {0, 1, 2, 3}, wi

j =

− ∂Ω
∂Ei

j
/ ∂Ω

∂C , ∀i ∈ {l, h}, ∀j ∈ {0, 1, 2} and r = A, we then have an equilibrium. For firms

in the capital good sector, A = r indicates zero profit. For firms producing final the
consumption good, q = qj follows from the zero profit condition as well. For firms
producing intermediate goods j, combining with E(.) and expressions of q and wi

j, we
have the following inequality

q ≤ qwi
0; qλ ≤ qwi

1 + a; qλ2 ≤ qwi
2 + a2; qλ3 ≤ a3, i ∈ {l, h}. (44)

with equality hold if the corresponding production of intermediate goods j is positive.
This indicates that firms in each industry j earn at most zero profit. By setting the Hamil-
tonian for the household’s problem, we derive the first order conditions, which are the
same as those for the planner’s problem after substituting the expressions for r, q and
wi

j. Thus the planner’s solution maximizes the household’s utility given market prices.
Besides, the planner’s solution is also consistent with the optimization problem of firms
as they earn zero profit. Market clearing conditions are satisfied as production functions
are constant return to scale and firms can flexibly adjust their demand with zero profit.

B.2 Proof of proposition 2

For an instantaneous equilibrium, the employed and unemployed i−type workers in
each industry are only a fraction of total i−type workers in that industry, with these
fractions depending on the relative job finding and separation rate. Labor market clear-
ing implies

El
0

f̂ + δ̂

f̂
+ El

1
f̂ + δ̂

f̂
+ El

2
π f̂ + δ̂

π f̂
≤ Ll, (Eh

0 + Eh
1 + Eh

2)
f̂ + δ̂

f̂
≤ Lh. (45)

For planner’s problem, there should be no waste of employed workers in order to
maximize the final good consumption. In other words, any employed worker has the
required amount of capital flow to produce intermediate goods in that industry. If not,
those without enough capital should move into industry 0, which increases the final
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output. Thus the required capital inflow at each instant t is

Ω̄(Eh
0 + El

0, Eh
1 + El

1, Eh
2 + El

2, K3) =
2

∑
i=1

ai(Eh
i + El

i) + K3

And the consumption of final good is

C̄(Eh
0 + El

0, Eh
1 + El

1, Eh
2 + El

2, K3) =
2

∑
i=0

λi(Eh
i + El

i) +
λ3

a3 K3

The Hamiltonian of planner’s problem can then be rewritten as

H = e−ρt C1−σ − 1
1 − σ

+ µk[AK − Ω̄(Eh
0 + El

0, Eh
1 + El

1, Eh
2 + El

2, K3)]

+ µc[C̄(Eh
0 + El

0, Eh
1 + El

1, Eh
2 + El

2, K3)− C] + µl(Ll − (El
0

f̂ + δ̂

f̂
+ El

1
f̂ + δ̂

f̂
+ El

2
π f̂ + δ̂

π f̂
))

+µh(Lh − (Eh
0 + Eh

1 + Eh
2)

f̂ + δ̂

f̂
) + µe(ξEl

2) (46)

We have three state variables {K, Lh, Ll} and eight control variables {C, Ei
j, K3}, i ∈

{h, l}, j ∈ {0, 1, 2}. The last term of Hamiltonian is related to the equation of experience
accumulation L̇h = ξEl

2. All multipliers are positive. Let C∗(t), Ei∗
j (t) and K∗

3(t) denote
the optimal consumption level, the optimal level of employment of i−experience-typed
workers in industry j , and the optimal level of capital inflow in industry 3, at time t. If
El∗

2 (t) = 0, the last term ξEl
2 is zero, and the maximization of H requires the planner to

minimize the capital inflow Ω̄(Eh
0 + El

0, Eh
1 + El

1, Eh
2 + El

2, K3) for a given path C∗(t) with
the market clearing conditions (45) hold.

If El∗
2 (t) > 0, the first order conditions of El

i(t), i ∈ {0, 1, 2} become

µc −
f̂ + δ̂

f̂
µl ≤ 0, λµc − aµk −

f̂ + δ̂

f̂
µl ≤ 0, λ2µc − a2µk −

π f̂ + δ̂

π f̂
µl + ξµe = 0 (47)

Notice that µh and µl indicate the value of experienced and inexperienced workers.
Then we must have µh > µl

16, and it implies

16The f.o.c of C in (46) implies that µc = e−ρtC−σ > 0. The first term in (47) implies µl ≥
f̂

f̂+δ̂
µc > 0.
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∂H
∂Eh

0
= µc −

f̂ + δ̂

f̂
µh < 0,

∂H
∂Eh

1
= λµc − aµk −

f̂ + δ̂

f̂
µh < 0

It follows that Eh∗
0 (t) = Eh∗

1 (t) = 0 and Eh∗
2 (t) = f̂

f̂+δ̂
Lh. Since inexperienced work-

ers have a lower fraction of employment in industry 2, all experienced workers are first
allocated into industry 2 before any inexperienced ones 17.

(i) For the case K∗
3(t) > 0, the first order conditions with respect to K3(t) implies

that λ3

a3 = µk
µc

. We have ∂H
∂El

0
< 0 and ∂H

∂El
1
< 0 if assumption 1 holds. Then El∗

0 (t) = 0,

El∗
1 (t) = 0, and El∗

2 (t) = π f̂
π f̂+δ̂

Ll(t). All workers stay in industry 2, and it is straightfor-

ward to check that such labor allocation minimizes the capital inflow to produce C∗(t).

(ii) For the case K∗
3(t) = 0, the labor allocation minimizes capital inflow if and only

if El∗
0 (C) = 0 18. So we need ∂H

∂El
0
< 0. If ∂H

∂El
0
= 0, we have

µc −
f̂ + δ̂

f̂
µl = 0, λµc − aµk −

f̂ + δ̂

f̂
µl ≤ 0, λ2µc − a2µk −

π f̂ + δ̂

π f̂
µl + ξµe = 0 (48)

which implies

µk
µc

≥ λ − 1
a

;

ξ ≥ µc

µe
(

π f̂ + δ̂

π f̂ + πδ̂
+ a(λ − 1)− λ2)

When ξ is small, from the last term of (47) and µh ≤ µl , we will have ∂H
∂Eh

2
= λ2µc − a2µk −

f̂+δ̂

f̂
µh > 0.

Then it is contradictory as the f.o.c of Eh
2 requires ∂H

∂Eh
2
≤ 0.

17For our benchmark model, experienced (inexperienced) workers means particularly they are ex-
perienced (inexperienced) in industry 2. For the infinity-industry model, we use the term experienced
(inexperienced) in industry n to avoid ambiguity. Assuming that all workers are initially inexperienced
in industry n + 1, we find the inexperienced workers in industry n are first allocated in industry n + 1
before any experienced workers in industry n. So these two implications are not conflicting.

18For the if part, given that our assumption 1 holds, the economy minimizes the capital inflow when
inexperienced workers only stay in industry 1 and industry 2, and experienced workers only stay in
industry 2; for the only if part, when inexperienced workers stay in both industry 0 and industry 2, we
can reallocate some of them in industry 1 to reduce the capital inflow without decreasing the output
C(t).
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The first order condition with respect to consumption reads, µc(t) = e−ρtC(t)−σ. So
to ensure that ∂H

∂El
0
< 0, we need

ξ <
e−ρtC(t)−σ

µe(t)
(

π f̂ + δ̂

π f̂ + πδ̂
+ a(λ − 1)− λ2)

The above inequality needs to hold at time t when K∗
3(t) = 0. When the capital good

is produced using an AK technology, consumption grows unboundedly to infinity. Let

T be the last time when C(T) = λ2 f̂
f̂+δ̂

L. For t ≥ T, we must have K3(t) > 0. The
sufficient condition to have the labor allocation minimizing capital inflow at any time t
is

ξ < ξ̄ ≡ min
t∈[0,T]

{ e−ρtC(t)−σ

µe(t)
(

π f̂ + δ̂

π f̂ + πδ̂
+ a(λ − 1)− λ2)} (49)

The right hand side is the minimum of positive values in a compact set. So ξ̄ is also
positive. The maximization of C(t) given capital inflow Ω(t) is a dual problem of the
minimization of Ω(t) given C(t). When ξ < ξ̄, the economy is at an optimal steady state
equilibrium at each instant.

B.3 Proof of proposition 3

Since all resources are used for the optimal solution, we set the Langrange as follows

L = (El
0 + Eh

0) + λ(El
1 + Eh

1) + λ2(El
2 + Eh

2) +
λ3

a3 K3 + µΩ(Ω − a(El
1 + Eh

1)− a2(El
2 + Eh

2)− K3)

+µl(Ll − El
0

f̂ + δ̂

f̂
− El

1
f̂ + δ̂

δ̂
− El

2
π f̂ + δ̂

π f̂
) + µh(Lh − (Eh

0 + Eh
1 + Eh

2)
f̂ + δ̂

f̂
), (50)

The control variables are Ei
j,i ∈ {l, h},j ∈ {0, 1, 2} which are used to produce goods

j = 0, 1, 2 and K3 which is used to produce good 3. The Kuhn-Tucker conditions are

(1 − µi
f̂ + δ̂

f̂
)Ei

0 = 0, Ei
0 ≥ 0, 1 − µi

f̂ + δ̂

f̂
≤ 0, i ∈ {l, h}, (51)

(λ − µi
f̂ + δ̂

f̂
− aµΩ)Ei

1 = 0, Ei
1 ≥ 0, λ − µi

f̂ + δ̂

f̂
− aµΩ ≤ 0, i ∈ {l, h}, (52)
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(λ2 − µl
π f̂ + δ̂

π f̂
− a2µΩ)El

2 = 0, El
2 ≥ 0, λ2 − µl

π f̂ + δ̂

π f̂
− a2µΩ ≤ 0, (53)

(λ2 − µh
f̂ + δ̂

f̂
− a2µΩ)Eh

2 = 0, Eh
2 ≥ 0, λ2 − µh

f̂ + δ̂

f̂
− a2µΩ ≤ 0, (54)

(
λ3

a3 − µΩ)K3 = 0, K3 ≥ 0,
λ3

a3 − µΩ ≤ 0. (55)

Given Assumption 1, there exist the following cases:

(1) if µΩ > λ−1
a : µl = µh = f̂

f̂+δ̂
, and only industry 0 exists: El

0 = f̂
f̂+δ̂

Ll, Eh
0 = f̂

f̂+δ̂
Lh.

(2) if µΩ = λ−1
a : µl = µh = f̂

f̂+δ̂
, and industry 0 and industry 1 coexist: ∑1

j=0 El
j =

f̂
f̂+δ̂

Ll, ∑1
j=0 Eh

j = f̂
f̂+δ̂

Lh.

(3) if λ2−λ
a2−a < µΩ < λ−1

a : µl = µh = f̂
f̂+δ̂

(λ − aµE), and only industry 1 exists:

El
1 = f̂

f̂+δ̂
Ll, Eh

1 = f̂
f̂+δ̂

Lh.

(4) if µΩ = λ2−λ
a2−a : µh = µl = f̂

f̂+δ̂

(a−λ)λ
a−1 . Experienced workers stay in industry

1 and industry 2 : ∑2
j=1 Eh

j = f̂
f̂+δ̂

Lh. Inexperienced workers only stay in industry 1:

El
1 = f̂

f̂+δ̂
Ll.

(5) if
λ2 π f̂

π f̂+δ̂
−λ

f̂
f̂+δ̂

a2 π f̂
π f̂+δ̂

−a f̂
f̂+δ̂

< µΩ < λ2−λ
a2−a : µl = f̂

f̂+δ̂
(λ − aµΩ) and µh = f̂

f̂+δ̂
(λ2 − a2µΩ).

Experienced workers only stay in industry 2: Eh
2 = f̂

f̂+δ̂
Lh while inexperienced workers

only stay in industry 1: El
1 = f̂

f̂+δ̂
Ll.

(6) if µΩ =
λ2 π f̂

π f̂+δ̂
−λ

f̂
f̂+δ̂

a2 π f̂
π f̂+δ̂

−a f̂
f̂+δ̂

: µl =
f̂

f̂+δ̂

π f̂
π f̂+δ̂

(a−λ)λ

a π f̂
π f̂+δ̂

− f̂
f̂+δ̂

and µh = f̂
f̂+δ̂

f̂
f̂+δ̂

(a−λ)λ

a π f̂
π f̂+δ̂

− f̂
f̂+δ̂

. Expe-

rienced workers stay in industry 2: Eh
2 = f̂

f̂+δ̂
Lh while inexperienced workers stay in

industry 1 and industry 2: f̂+δ̂

f̂
El

1 +
π f̂+δ̂

π f̂
El

2 = Ll.

(7) if λ3

a3 < µΩ <
λ2 π f̂

π f̂+δ̂
−λ

f̂
f̂+δ̂

a2 π f̂
π f̂+δ̂

−a f̂
f̂+δ̂

: µl = π f̂
π f̂+δ̂

(λ2 − a2µE) and µh = f̂
f̂+δ̂

(λ2 − a2µE).
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Workers of both types stay in industry 2: El
2 = π f̂

π f̂+δ̂
Ll and Eh

2 = f̂
f̂+δ̂

Lh and industry 3,
which only uses capital, is not in production.

(8) if µΩ = λ3

a3 : Both experienced workers only stay in industry 2 and industry 3
(which only uses capital) is in production.

In equilibrium, µΩ ≥ λ3

a3 and the market clearing condition of capital flow Ω implies
the results presented in Table B.1:

Table B.1: the required capital flow in the optimal steady state equilibrium

(1). f̂
f̂+δ̂

(Lh + Ll) ≤ C < λ
f̂

f̂+δ̂
(Lh + Ll) (2). λ

f̂
f̂+δ̂

(Lh + Ll) ≤ C < f̂
f̂+δ̂

(λLl + λ2Lh)

Ω = a
λ−1 C − a

λ−1
f̂

f̂+δ̂
(Lh + Ll) Ω = a2−a

λ2−λ
C − a(a−λ)

λ−1
f̂

f̂+δ̂
(Lh + Ll)

El
0 + Eh

0 =
λ

f̂
f̂+δ̂

(Lh+Ll)−C

λ−1 El
0 = 0, Eh

0 = 0

El
1 + Eh

1 =
C− f̂

f̂+δ̂
(Lh+Ll)

λ−1 El
1 = f̂

f̂+δ̂
Ll , Eh

1 =
λ2 f̂

f̂+δ̂
(Lh+Ll)−C

λ2−λ
− f̂

f̂+δ̂
Ll

El
2 = 0, Eh

2 = 0 El
2 = 0, Eh

2 =
C−λ

f̂
f̂+δ̂

(Lh+Ll)

λ2−λ

(3). f̂
f̂+δ̂

(λLl + λ2Lh) ≤ C < λ2( π f̂
π f̂+δ̂

Ll + f̂
f̂+δ̂

Lh) (4). C ≥ λ2( π f̂
π f̂+δ̂

Ll + f̂
f̂+δ̂

Lh)

Ω =
a2 π f̂

π f̂+δ̂
−a f̂

f̂+δ̂

λ2 π f̂
π f̂+δ̂

−λ
f̂

f̂+δ̂

C − f̂
f̂+δ̂

a(a−λ)

λ
π f̂

π f̂+δ̂
− f̂

f̂+δ̂

( π f̂
π f̂+δ̂

Ll + f̂
f̂+δ̂

Lh) Ω = a3

λ3 C − a2(a−λ)
λ ( π f̂

π f̂+δ̂
Ll + f̂

f̂+δ̂
Lh)

El
0 = 0, Eh

0 = 0 El
0 = 0, Eh

0 = 0

El
1 = f̂

f̂+δ̂
(

λ2(
π f̂

π f̂+δ̂
Ll+

f̂
f̂+δ̂

Lh)−C

λ2 π f̂
π f̂+δ̂

−λ
f̂

f̂+δ̂

), Eh
1 = 0 El

1 = 0, Eh
1 = 0

El
2 = π f̂

π f̂+δ̂
(

C−λ2 f̂
f̂+δ̂

Lh−λ
f̂

f̂+δ̂
Ll

λ2 π f̂
π f̂+δ̂

−λ
f̂

f̂+δ̂

), Eh
2 = f̂

f̂+δ̂
Lh El

2 = π f̂
π f̂+δ̂

Ll , Eh
2 = f̂

f̂+δ̂
Lh

.
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B.4 Solving the dynamic path for the benchmark model

The necessary conditions are

µ̇ = (ρ − A)µ, (56)

Ĉ ∈ argmax{C1−σ − 1
1 − σ

+ µ(AK − Ω(C, Ll, L − Ll))} (57)

Under Assumption 1, the value of capital, µ, decreases exponentially at a constant rate.
We know that Ω(C, Ll, L − Ll) is a piece-wise linear function. When Ĉ is not at the
endpoints of linear parts, and we have Ĉ−σ = µ

∂E(Ĉ,Ll ,L−Ll)
∂C , then it solves equation

(57). As ∂E(Ĉ,Ll ,L−Ll)
∂C remains constant around the local area, locally we have the Euler

equation:

˙̂C
Ĉ

=
A − ρ

σ
(58)

When Ĉ reaches the endpoints, the following conditions hold:

Ĉ−σ − µ
∂Ω(Ĉ, Ll, L − Ll)

∂C−
≥ 0, Ĉ−σ − µ

∂Ω(Ĉ, Ll, L − Ll)

∂C+
≤ 0 (59)

where ∂·
∂x−

and ∂·
∂x+

denote the left and right derivatives. To maximize the value in (57),

Ĉ should stay at the endpoints until Ĉ−σ − µ
∂Ω(Ĉ,Ll ,L−Ll)

∂C+
> 0. Notice that in our model,

inexperienced workers become experienced, so the endpoints (C̄, C) as well as the so-
lution Ĉ may be moving with time. It then follows that there are three stages for the
industrial upgrading from industry 1 to industry 2:

Stage I: All workers search in industry 1:

C(t) = λ
f̂

f̂ + δ̂
L, if µ ∈ ((

λ f̂
f̂ + δ̂

L)−σ M1, (
λ f̂

f̂ + δ̂
L)−σ (λ − 1)

a
] (60)

where M1 =
λ2 π f̂

π f̂+δ̂
−λ

f̂
f̂+δ̂

a2 π f̂
π f̂+δ̂

−a f̂
f̂+δ̂

. The life span of this first stage is log(a/((λ−1)M1))
A−ρ . In stage I,

consumption remains the same while capital accumulates with time.

Stage II: Inexperienced workers are employed in both industries while experienced
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in industry 2 only:

C(t) = λ
f̂

f̂ + δ̂
Legc(t−t1), if µ ∈ [C̄−σ M1, (

λ f̂
f̂ + δ̂

L)−σ M1] (61)

where gc ≡ A−ρ
σ , and t1 denotes the time when µ(t1) = ( λ f̂

f̂+δ̂
L)−σ M1 is satisfied. That

is, t1 is the time when inexperienced workers begin to search in industry 2. We will de-
rive the closed form solution of Ll(t) later. For the condition (61) to hold, we implicitly
assume that experienced workers in industry 2 are not enough to satisfy the increase of
consumption demand, i.e. ∂Ω(C,L−Ll ,Ll)

∂C = 1
M1

instead of λ(λ−1)
a(a−1) . So that there will always

be inexperienced workers in industry 2 when the industrial upgrading from industry 1
to 2 takes place. We verify this later by using the expression of Ll(t).

Stage III: All workers search in industry 2 and industry 3 is not in production:

C(t) = C̄(t), if µ ∈ [C̄(t)−σ λ3

a3 , C̄(t)−σ M1] (62)

In this stage, consumption increases as inexperienced workers learn to become ex-
perienced, and the intermediate goods of industry 2 increases. Capital also accumulates
over time but industry 3, which uses capital only, is not in production, because of the
jump in marginal cost.

From Table 2.1, we know that after t1:

El
2 =

π f̂
π f̂ + δ̂

(
C − λ2 f̂

f̂+δ̂
(L − Ll)− λ

f̂
f̂+δ̂

Ll

λ2 π f̂
π f̂+δ̂

− λ
f̂

f̂+δ̂

), (63)

Combining with (61), we obtain

El
2(t) = N1egc(t−t1) − (N1 + N2L) + N2Ll, (64)

where

N1 =
L f̂

f̂+δ̂

π f̂
π f̂+δ̂

λ
π f̂

π f̂+δ̂
− f̂

f̂+δ̂

, N2 =
(λ − 1) f̂

f̂+δ̂

π f̂
π f̂+δ̂

λ
π f̂

π f̂+δ̂
− f̂

f̂+δ̂

. (65)
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As El
2 cannot exceed the total supply of inexperienced workers, we have

El
2(t) = min{N1egc(t−t1) − (N1 + N2L) + N2Ll,

π f̂
π f̂ + δ̂

Ll}. (66)

As inexperienced workers in industry 2 gradually become experienced through on-
the-job learning, then

L̇l = −ξEl
2. (67)

Substituting (66) into the above equation yields

L̇l = −ξ min{N1egc(t−t1) − (N1 + N2L) + N2Ll,
π f̂

π f̂ + δ̂
Ll}. (68)

Solving the above differential equation with the initial condition that Ll(t1) = L, we
obtain Equations (23) and (24) in the main text.

From equation (23), we know that El
2(t) is positive during t1 < t ≤ t2,l, which

verifies that the consumption increased brought by the experience accumulation is not
enough to support the increasing consumption demand. More inexperienced workers
are allocated to industry 2. After t2,l, all workers stay in industry 2, and C(t) = C̄(t).

We can also compute
˙̄C(t)

C̄(t) as

˙̄C(t)
C̄(t)

=

π f̂
π f̂+δ̂

ξ( f̂
f̂+δ̂

− π f̂
π f̂+δ̂

)Ll(t)

f̂
f̂+δ̂

(L − Ll(t)) + π f̂
π f̂+δ̂

Ll(t)
, (69)

which is a decreasing function of time as Ll(t) is a decreasing function of time. The

value
˙̄C(t)

C̄(t) at t2,l is smaller than gc, so it is smaller than gc after t2,l. This verifies that the
experience accumulation is not enough to support the increasing consumption demand,
and inexperienced workers will not be allocated back to industry 1 after t2,l.
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B.5 Proof of proposition 5

(1) Learning efficiency Consider the first half of dynamics when t1 < t ≤ t2,l. Taking the
partial derivative of El

2 with respect to ξ, we get

∂El
2

∂ξ
=

N1N2gc

(N2ξ + gc)2 [((N2ξ + gc)(t − t1) + 1)e−N2ξ(t−t1) − egc(t−t1)]

=
N1N2gce−N2ξ(t−t1)

(N2ξ + gc)2 [((N2ξ + gc)(t − t1) + 1)− e(N2ξ+gc)(t−t1)] < 0 (70)

The last term is negative for ex > x + 1 if x ̸= 0. ∂El
2

∂ξ < 0 implies that aggregate

unemployment rate shifts downward in the first half. Similarly, we can prove that ∂Ll

∂ξ <

0. Then we show t′2,l − t′1 > t2,l − t1: the expansion stage of industry 2 gets longer.
Notice that t2,l is the first time when

El
2 =

π f̂
π f̂ + δ̂

Ll, (71)

Substituting (23) and (24) into (71) gives

LHS(t) ≡ N1
N2ξ+gc

( π f̂
π f̂+δ̂

ξegc(t−t1) + π f̂
π f̂+δ̂

gc
N2 e−N2ξ(t−t1) + gcegc(t−t1) − gce−N2ξ(t−t1))

= π f̂
π f̂+δ̂

(L + N1
N2
) (72)

It is straightforward to check that LHS(t) is an increasing function of t, and that

∂LHS(t)
∂ξ =

N1gce−N2ξ(t−t1)(N2−
π f̂

π f̂+δ̂
)

(N2ξ+gc)2 [((N2ξ + gc)(t − t1) + 1)− e(N2ξ+gc)(t−t1)] (73)

From (65), we know N2 > π f̂
π f̂+δ̂

. Thus ∂LHS(t)
∂ξ < 0. Therefore when ξ increases we

must have t′2,l − t′1 > t2,l − t1 to ensure that (72) holds. As Ll(t) is a decreasing function

of ξ and t, when ξ ′ > ξ and t′2,l − t′1 > t2,l − t1, we have Ll ′(t′2,l) < Ll(t2,l). Combining
with (71) and (22), it implies that U′(t′2,l) < U(t2,l). Aggregate unemployment rate
reaches a lower peak value when ξ increases.
Finally we prove that aggregate unemployment rate decreases for the second half for
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t > t2,l if ξ increases. Define

Ll
hypo(t) ≡

−N1
N2(N2ξ+gc)

(ξN2egc(t−t1) + gce−N2ξ(t−t1)) + N1
N2

+ L, ∀t > t1 (74)

It follows from the definitions that Ll
hypo(t) = Ll(t), ∀t1 < t ≤ t2,l. Besides,

L̇l
hypo(t) < L̇l

hypo(t2,l) = L̇l(t2,l) < L̇l(t), ∀t > t2,l (75)

Then Ll
hypo(t) < Ll(t), ∀t > t2,l. We want to show U′(t′2,l) < U(t′2,l − t′1 + t1).

If this is true, we know that the aggregate unemployment actually shifts downward

for the whole path as it decreases exponentially at a larger rate − π f̂
π f̂+δ̂

ξ ′ for t > t′2,l.

From the discussion above, we have Ll ′(t′2,l) = Ll ′
hypo(t′2,l) < Ll

hypo(t
′
2,l − t′1 + t1) <

Ll(t′2,l − t′1 + t1). The first inequality holds as Ll
hypo(t) is a decreasing function of ξ, and

the second inequality holds as Ll
hypo(t) < Ll(t), ∀t > t2,l and t′2,l − t′1 > t2,l − t1. Com-

bining with (22), we prove U′(t′2,l) < U(t′2,l − t′1 + t1).

Figure B.1: How unemployment rate changes with learning efficiency

(2) capital-goods production efficiency When A increases, the growth rate of consumption
goods gc increases, which results in more rapid industrial upgrading. Taking the partial
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derivative of El
2 and Ll with respect to gc when t1 < t ≤ t2,l, we have

∂El
2

∂gc
=

N1

N2ξ + gc
[

N2ξ

N2ξ + gc
(egc(t−t1) − e−N2ξ(t−t1)) + gc(t − t1)egc(t−t1)] > 0 (76)

∂Ll

∂gc
=

−N1

N2(N2ξ + gc)
[ξN2(t − t1)egc(t−t1) − N2ξ

N2ξ + gc
egc(t−t1) +

N2ξ

N2ξ + gc
e−N2ξ(t−t1)]

=
−ξN1egc(t−t1)

(N2ξ + gc)2 [(t − t1)(N2ξ + gc)− 1 + e−(N2ξ+gc)(t−t1)] < 0 (77)

The last term is negative using again the inequality e−x > −x + 1. Therefore, aggregate
unemployment rate shifts upward while the number of inexperienced workers shifts
downward when t1 < t ≤ t2,l. Immediately, we have t′2,l − t′1 < t2,l − t1 for A′ > A, in-
dicating that it takes less time for structural unemployment rate to reach its peak value.
Meanwhile structural unemployment is larger during the industrial upgrading. Then
we prove it reaches a larger peak value. We make use of the properties that Ll is de-
creasing with t while El

2 is increasing with t before t2,l.

Using (71), we have

∂El
2(t2,l)

∂gc
=

∂El
2

∂gc
+

∂El
2

∂t
∂t2,l

∂gc
=

π f̂
π f̂ + δ̂

(
∂Ll

∂gc
+

∂Ll

∂t
∂t2,l

∂gc
) (78)

Rearranging (78) to find ∂t2,l
∂gc

, and substituting it into (78), lead to

∂El
2(t2,l)

∂gc
=

π f̂
π f̂ + δ̂

∂El
2

∂gc
∂Ll

∂t − ∂Ll

∂gc

∂El
2

∂t

π f̂
π f̂+δ̂

∂Ll

∂t − ∂El
2

∂t

⇒ ∂El
2(t2,l)

∂gc
> 0 ⇔

∂El
2

∂gc

∂El
2

∂t

|t2,l >

∂Ll

∂gc

∂Ll

∂t

|t2,l (79)

Comparing
∂Ll
∂gc
∂Ll
∂t

|t2,l and
∂El

2
∂gc
∂El

2
∂t

|t2,l . If
∂El

2
∂gc
∂El

2
∂t

|t2,l >
∂Ll
∂gc
∂Ll
∂t

|t2,l indicates that the economy has a

larger peak value of the aggregate unemployment rate when A increases. Taking the
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partial derivatives of El
2, we have

∂El
2

∂gc

∂El
2

∂t

|t2,l =

N1
N2ξ+gc

[ N2ξ
N2ξ+gc

(egc(t2,l−t1) − e−N2ξ(t2,l−t1)) + gc(t2,l − t1)egc(t2,l−t1)]

N1gc
N2ξ+gc

[gcegc(t2,l−t1) + N2ξe−N2ξ(t2,l−t1)]

=

N2ξ
N2ξ+gc

(egc(t2,l−t1) − e−N2ξ(t2,l−t1)) + gc(t2,l − t1)egc(t2,l−t1)

gc[gcegc(t2,l−t1) + N2ξe−N2ξ(t2,l−t1)]

=
1
gc (e

gc(t2,l−t1)−e−N2ξ(t2,l−t1))− 1
N2ξ+gc (e

gc(t2,l−t1)−e−N2ξ(t2,l−t1))+(t2,l−t1)e
gc(t2,l−t1)

gcegc(t2,l−t1)+N2ξe−N2ξ(t2,l−t1)
(80)

Similarly, taking the partial derivatives of Ll

∂Ll

∂gc

∂Ll

∂t

|t2,l =

ξN1N2
N2(N2ξ+gc)2 [((t2,l − t1)(N2ξ + gc)− 1)egc(t2,l−t1) + e−N2ξ(t2,l−t1)]

ξN1N2gc
N2(N2ξ+gc)

[egc(t2,l−t1) − e−N2ξ(t2,l−t1)]

=

1
N2ξ+gc

[((t2,l − t1)(N2ξ + gc)− 1)egc(t2,l−t1) + e−N2ξ(t2,l−t1)]

gc[egc(t2,l−t1) − e−N2ξ(t2,l−t1)]

=
− 1

N2ξ+gc
(egc(t2,l−t1) − e−N2ξ(t2,l−t1)) + (t2,l − t1)egc(t2,l−t1)

gc[egc(t2,l−t1) − e−N2ξ(t2,l−t1)]
(81)

From equations (80) and (81),
∂El

2
∂gc
∂El

2
∂t

|t2,l >
∂Ll
∂gc
∂Ll
∂t

|t2,l is equivalent to

∂El
2

∂gc

∂El
2

∂t

|t2,l >

∂Ll

∂gc

∂Ll

∂t

|t2,l

⇔ [egc(t2,l−t1) − e−N2ξ(t2,l−t1)]2 > [e−N2ξ(t2,l−t1) + ((N2ξ + gc)(t2,l − t1)− 1)egc(t2,l−t1)]e−N2ξ(t2,l−t1)

⇔ egc(t2,l−t1) > [(N2ξ + gc)(t2,l − t1) + 1]e−N2ξ(t2,l−t1)

⇔ e(N2ξ+gc)(t2,l−t1) > [(N2ξ + gc)(t2,l − t1) + 1] (82)

We finally prove that aggregate unemployment rate in the long run is lower with a
larger gc by contradiction. It is equivalent to show that aggregate unemployment rate is
lower after the duration t2,l − t1. If not, E2,l must be larger at any time in (t′1, t′1 + t2,l − t1].
It induces that Ll decreases at a larger rate during this period. Given that all workers
are inexperienced initially L′

l(t
′
1) = L, Ll must come to a lower value: L′

l(t
′
1 + t2,l − t1) <

Ll(t2,l), and thus aggregate unemployment rate must be lower after the duration t2,l − t1
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as all inexperienced workers are now in industry 2. This leads to the contradiction.

Figure B.2: How unemployment rate changes with capital-goods production efficiency

(3) Mismatch We prove that when π decreases, aggregate unemployment rate shifts

upward after t1. Equivalently, π f̂
π f̂+δ̂

decreases. First prove that ∂El
2

∂
π f̂

π f̂+δ̂

|t < 0 when t1 <

t ≤ t2,l. As N1
N2

= L
λ−1 , we have

∂El
2

∂
π f̂

π f̂+δ̂

= L
λ−1

∂N2

∂
π f̂

π f̂+δ̂

[( gc
N2ξ+gc

)2(egc(t−t1) − e−N2ξ(t−t1)) + gc N2ξ(t−t1)
N2ξ+gc

e−N2ξ(t−t1)] < 0 (83)

The inequality holds as ∂N2

∂
π f̂

π f̂+δ̂

< 0. Using equations (22) and (83), we obtain

U =
δ̂

f̂ + δ̂
L + (

f̂
f̂+δ̂

π f̂
π f̂+δ̂

− 1)El
2 ⇒ ∂U

∂
π f̂

π f̂+δ̂

= −
f̂

f̂+δ̂

( π f̂
π f̂+δ̂

)2
El

2 + (

f̂
f̂+δ̂

π f̂
π f̂+δ̂

− 1)
∂El

2

∂
π f̂

π f̂+δ̂

< 0 (84)

It indicates that when mismatch is severer, aggregate unemployment rate shifts up-
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ward for the first half. To explain for the second half, first define U∗ as follows

U∗ ≡ δ̂
f̂+δ̂

L + ( f̂
f̂+δ̂

− π f̂
π f̂+δ̂

)Ll, (85)

From (71), t2,l is also the first time when U = U∗. Taking the partial derivatives gives

∂U∗

∂
π f̂

π f̂+δ̂

= (
f̂

f̂ + δ̂
− π f̂

π f̂ + δ̂
)

∂Ll

∂
π f̂

π f̂+δ̂

− Ll (86)

∂Ll

∂
π f̂

π f̂+δ̂

= − L
λ−1

ξgc
(N2ξ+gc)2 [egc(t−t1) − (1 + (N2ξ + gc)(t − t1))e−N2ξ(t−t1)] ∂N2

∂
π f̂

π f̂+δ̂

(87)

∂N2

∂
π f̂

π f̂+δ̂

= −(
N2
π f̂

π f̂+δ̂

)2 1
λ − 1

(88)

Combining equations (86), (87), (88) and (24), we have

∂U∗

∂
π f̂

π f̂+δ̂

= Lξgc
(λ−1)2

(
N2
π f̂

π f̂+δ̂

)2

(N2ξ+gc)2 [egc(t−t1) − (1 + (N2ξ + gc)(t − t1))e−N2ξ(t−t1)]( f̂
f̂+δ̂

− π f̂
π f̂+δ̂

)

+ L
λ−1 [

ξN2
(N2ξ+gc)

egc(t−t1) + gc
N2ξ+gc

e−N2ξ(t−t1)]− λL
λ−1 (89)

It implies that

∂U∗

∂
π f̂

π f̂+δ̂

< 0 ⇔ λ > ( N2
π f̂

π f̂+δ̂

)2
1

λ−1 ξgc

(N2ξ+gc)2 [egc(t−t1) − (1 + (N2ξ + gc)(t − t1))e−N2ξ(t−t1)]( f̂
f̂+δ̂

− π f̂
π f̂+δ̂

)

+[ ξN2
(N2ξ+gc)

egc(t−t1) + gc
N2ξ+gc

e−N2ξ(t−t1)] (90)

The Right hand side of equation (90) is an increasing function of t. To demonstrate
that ∂U∗

∂
π f̂

π f̂+δ̂

< 0 holds for t ∈ (t1, t2,l], we simply need to check it holds at time t2,l.

Combining equations (23),(24) and (71), we have

λ = 1
π f̂

π f̂+δ̂

N2gc
N2ξ+gc

(egc(t2,l−t1) − e−N2ξ(t2,l−t1)) + [ ξN2
(N2ξ+gc)

egc(t2,l−t1) + gc
N2ξ+gc

e−N2ξ(t2,l−t1)] (91)
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Combining (90) and (91) lead to

∂U∗

∂
π f̂

π f̂+δ̂

|t2,l < 0 ⇔ ( N2
π f̂

π f̂+δ̂

)2
1

λ−1 ξgc

(N2ξ+gc)2 [egc(t2,l−t1) − (1 + (N2ξ + gc)(t2,l − t1))e−N2ξ(t2,l−t1)]( f̂
f̂+δ̂

− π f̂
π f̂+δ̂

)

< 1
π f̂

π f̂+δ̂

N2gc
N2ξ+gc

(egc(t2,l−t1) − e−N2ξ(t2,l−t1)) ⇐ ( N2
π f̂

π f̂+δ̂

)2
1

λ−1 ξgc

(N2ξ+gc)2 (
f̂

f̂+δ̂
− π f̂

π f̂+δ̂
) < 1

π f̂
π f̂+δ̂

N2gc
N2ξ+gc

⇔ N2ξ
N2ξ+gc

( f̂
f̂+δ̂

− π f̂
π f̂+δ̂

) < (λ − 1) π f̂
π f̂+δ̂

⇐ f̂
f̂+δ̂

< λ
π f̂

π f̂+δ̂
(92)

The last inequality holds according to our assumption. It must be satisfied to ensure
that mismatch is not so severe that inexperienced workers never move into industry 2.
Similarly, by using U∗(t2,l) = U(t2,l), we get

∂U(t2,l)

∂
π f̂

π f̂+δ̂

=

∂U∗
∂t |t2,l

∂U

∂
π f̂

π f̂+δ̂

|t2,l − ∂U∗

∂
π f̂

π f̂+δ̂

|t2,l
∂U
∂t |t2,l

∂U∗
∂t |t2,l − ∂U

∂t |t2,l

< 0 (93)

Aggregate unemployment rate reaches a larger peak value with greater mismatch.

We know from equations (87) and (88) that ∂Ll

∂
π f̂

π f̂+δ̂

> 0, and from (83) that ∂El
2

∂
π f̂

π f̂+δ̂

< 0.

Thus, when π decreases, Ll shifts downward and El
2 shifts upward. the expansion du-

ration t2,l − t1 for (71) to hold becomes shorter. The time to reach the peak value of the
aggregate unemployment rate moves forward.

For π′ < π, assume the new expansion duration is t′2,l − t′1. From the discussion
above, we have U∗′(t2,l − t1 + t′1) = U′(t2,l − t1 + t′1) as t′2,l − t′1 < t2,l − t1. It follows
that

U′(t2,l − t1 + t′1)− U(t2,l) = U∗′(t2,l − t1 + t′1)− U∗(t2,l) (94)

U∗(t) is continuously differentiable with respect to t. Combining with (94), the
inequality ∂U∗

∂
π f̂

π f̂+δ̂

|t2,l < 0 implies that U′(t2,l − t1 + t′1) > U(t2,l). That is, aggregate

unemployment rate is still larger after the same waiting time t2,l − t1 when π gets
smaller. Then aggregate unemployment rate decreases exponentially at a slower rate

π′ f̂
π′ f̂+δ̂

ξ < π f̂
π f̂+δ̂

ξ. Thus for the whole path, aggregate unemployment rate shifts upward.

24



Figure B.3: How unemployment rate changes with the degree of mismatch

B.6 Supplementary proof of infinite-industry model

Optimal Steady State: For the optimal steady state, solve the following static optimiza-
tion problem:

max
∫

i∈[0,1]
λI(i)s(I(i), i)di (95)

s.t.
∫

i∈[0,1]
α(I(i))s(I(i), i)di ≤ Ω (96)

where α(I(i)) = 0 if I(i) = 0, and α(I(i)) = aI(i) if I(i) > 0. I(i) indicates that individual

i choose industry I(i) to work in. s(I(i), i) takes the value f̂
f̂+δ̂

if i is experienced in

industry I(i), or it takes the value π f̂
π f̂+δ̂

if i is inexperienced in industry I(i). So (95) is
the final output in consumption good sector, and (96) is the constraint for the capital
flows Ω. Using the multiplier µΩ, we have

L =
∫

i∈[0,1]
λI(i)s(I(i), i)di − µΩ

∫
i∈[0,1]

α(I(i))s(I(i), i)di + µΩΩ

=
∫

i∈[0,1]
(λI(i) − µΩα(I(i)))s(I(i), i)di + µΩΩ
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The first order condition with respect to I(i) becomes

I(i) ∈ argmax{(λI(i) − µΩα(I(i)))s(I(i), i)}

(1) For those who are inexperienced in industry n, n ≥ 1, and experienced in in-
dustry n + 1, it’s strictly better to allocate them in industry n + 1 than n if and only
if

(λn − µΩan)
π f̂

π f̂ + δ̂
< (λn+1 − µΩan+1)

f̂
f̂ + δ̂

⇔ µΩ < (
λ

a
)n

λ
f̂

f̂+δ̂
− π f̂

π f̂+δ̂

a f̂
f̂+δ̂

− π f̂
π f̂+δ̂

≡ µLH
n

(2) For those who are experienced (inexperienced) in industry n, n ≥ 1, and experi-
enced (inexperienced) in industry n + 1, it’s strictly better to allocate them in industry
n + 1 than n if and only if

(λn − µΩan) < (λn+1 − µΩan+1) ⇔ µΩ < (
λ

a
)n λ − 1

a − 1
≡ µLL

n

(3) For those who are experienced in industry n, n ≥ 1, and inexperienced in in-
dustry n + 1, it’s strictly better to allocate them in industry n + 1 than n if and only
if

(λn − µΩan)
f̂

f̂ + δ̂
< (λn+1 − µΩan+1)

π f̂
π f̂ + δ̂

⇔ µΩ < (
λ

a
)n

λ
π f̂

π f̂+δ̂
− f̂

f̂+δ̂

a π f̂
π f̂+δ̂

− f̂
f̂+δ̂

≡ µHL
n

(4) It’s strictly better to allocate workers in industry 1 than industry 0 if and only if

1 < λ − aµΩ ⇔ µΩ <
λ − 1

a
≡ µ0

With our assumption 2, we have{
µLH

n+1 < µHL
n , µHL

n < µLL
n < µLH

n , ∀n ≥ 1
µLL

1 < µ0
(97)
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From (97), by induction we know that if µHL
n ≤ µΩ ≤ µLH

n ,

(λn − µΩan)
π f̂

π f̂ + δ̂
> (λi − µΩai)

f̂
f̂ + δ̂

, ∀i < n

(λn+1 − µΩan+1)
π f̂

π f̂ + δ̂
> (λi − µΩai)

f̂
f̂ + δ̂

∀i > n + 1

For µHL
n ≤ µΩ ≤ µLH

n , all workers stay in industry n or n + 1. Then the solution to
this static problem can be summarized as follows:

(1) if µΩ > µ0: all workers stay in industry 0.

(2) if µΩ = µ0: workers stay in industry 0 and industry 1.

(3) if µLL
1 < µΩ < µ0: all workers stay in industry 1.

(4) For n ≥ 2, if µΩ = µLH
n : experienced workers in industry n or inexperienced

workers in industry n + 1 stay in industry n. Workers who are inexperienced in indus-
try n and experienced in industry n + 1 stay in industry n and industry n + 1.

(5) For n ≥ 2, if µLL
n < µΩ < µLH

n : experienced workers in industry n or inexperi-
enced workers in industry n + 1 stay in industry n. Workers who are inexperienced in
industry n and experienced in industry n + 1 stay in industry n + 1.

(6) For n ≥ 1, if µΩ = µLL
n : workers of the same experience type in industry n and

n + 1 stay in industry n and industry n + 1. Workers who are inexperienced in industry
n and experienced in industry n + 1 stay in industry n + 1. Workers who are experi-
enced in industry n and inexperienced in industry n + 1 stay in industry n.

(7) For n ≥ 1, if µHL
n < µΩ < µLL

n : workers who are experienced in industry n and
inexperienced in industry n + 1 stay in industry n. Others stay in industry n + 1.

(8) For n ≥ 1, if µΩ = µHL
n : workers who are experienced in industry n and inexpe-

rienced in industry n + 1 stay in industry n and industry n + 1. Others stay in industry
n + 1.
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(9) For n ≥ 1, if µLH
n+1 < µΩ < µHL

n : all workers stay in industry n + 1.

Let L(i,j)
(n,n+1) denote the number of workers who are i-type of experience in indus-

try n and j-type of experience in industry n + 1. The function of required capital flow
Ω(C, {L(i,j)

(n,n+1)}) to produce output C becomes

Ω(C, {L(i,j)
(n,n+1)}) =



an+1 f̂
f̂+δ̂

−an π f̂
π f̂+δ̂

λn+1 f̂
f̂+δ̂

−λn π f̂
π f̂+δ̂

(C − C0
(n,n+1)) + E0

(n,n+1), if C ∈ [C0
(n,n+1), C1

(n,n+1))

an+1−an

λn+1−λn (C − C1
(n,n+1)) + E1

(n,n+1), if C ∈ [C1
(n,n+1), C2

(n,n+1))

an+1 π f̂
π f̂+δ̂

−an f̂
f̂+δ̂

λn+1 π f̂
π f̂+δ̂

−λn f̂
f̂+δ̂

(C − C2
(n,n+1)) + E2

(n,n+1), if C ∈ [C2
(n,n+1), C0

(n+1,n+2))

(98)

where

C0
(n,n+1) ≡ λn[

f̂
f̂ + δ̂

(L(h,l)
(n,n+1) + L(h,h)

(n,n+1)) +
π f̂

π f̂ + δ̂
(L(l,l)

(n,n+1) + L(l,h)
(n,n+1))],

E0
(n,n+1) ≡ an[

f̂
f̂ + δ̂

(L(h,l)
(n,n+1) + L(h,h)

(n,n+1)) +
π f̂

π f̂ + δ̂
(L(l,l)

(n,n+1) + L(l,h)
(n,n+1))]

C1
(n,n+1) ≡ λn[

f̂
f̂ + δ̂

(L(h,l)
(n,n+1) + L(h,h)

(n,n+1) + λL(l,h)
(n,n+1)) +

π f̂
π f̂ + δ̂

L(l,l)
(n,n+1)]

E1
(n,n+1) ≡ an[

f̂
f̂ + δ̂

(L(h,l)
(n,n+1) + L(h,h)

(n,n+1) + aL(l,h)
(n,n+1)) +

π f̂
π f̂ + δ̂

L(l,l)
(n,n+1)]

C2
(n,n+1) ≡ λn[

f̂
f̂ + δ̂

(L(h,l)
(n,n+1) + λL(h,h)

(n,n+1) + λL(l,h)
(n,n+1)) +

π f̂
π f̂ + δ̂

λL(l,l)
(n,n+1)]

E2
(n,n+1) ≡ an[

f̂
f̂ + δ̂

(L(h,l)
(n,n+1) + aL(h,h)

(n,n+1) + aL(l,h)
(n,n+1)) +

π f̂
π f̂ + δ̂

aL(l,l)
(n,n+1)]

The Dynamic Path: Like the benchmark model, when ξ is small, the necessary condi-
tions are

µ̇ = (ρ − A)µ, (99)

C ≈ Ĉ ∈ argmax{C1−σ − 1
1 − σ

+ µ(AK − Ω(C, {L(i,j)
(n,n+1)})} (100)
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where µ is the multiplier for the capital evolution equation. Define

M0,n ≡
λn+1 π f̂

π f̂+δ̂
− λn f̂

f̂+δ̂

an+1 π f̂
π f̂+δ̂

− an f̂
f̂+δ̂

, M1,n ≡ λn+1 − λn

an+1 − an

There are four stages for industrial upgrading from industry n to industry n + 1:

State I: All workers stay in industry n.

For µ ∈ ((C0
(n,n+1))

−σ M1,n, (C0
(n,n+1))

−σ M0,n−1],

Ĉ−σ − µ
∂Ω(Ĉ, Ll, L − Ll)

∂C−
|Ĉ=C0

(n,n+1)
≥ 0, Ĉ−σ − µ

∂Ω(Ĉ, Ll, L − Ll)

∂C+
|Ĉ=C0

(n,n+1)
≤ 0.

At this stage, all workers search in industry n, and there is no industrial upgrading in
this stage while capital is accumulated. Inexperienced workers in industry n gradually
become experienced workers by on-the-job learning, so consumption grows at a speed
lower than the constant rate gc. As all workers are initially inexperienced in industry
n + 1, L(l,h)

(n,n+1) = 0. Therefore

C(t) = C0
(n,n+1)(t) = C1

(n,n+1)(t)

Let Li
n denote the number of workers who are i-type of experience in industry n

and also stay in industry n. Let tall
n denote the starting time of this stage: µ(tall

n ) =

(C0
(n,n+1))

−σ M0,n−1. Let tl
n+1 denote the ending time of this stage: µ(tl

n+1) = (C0
(n,n+1))

−σ M1,n.

As L̇l
n = −ξ

π f̂
π f̂+δ̂

Ll
n, we have


Ll

n(t) = Ll
n(tall

n )e
−ξ

π f̂
π f̂+δ̂

(t−tall
n )

Lh
n(t) = L − Ll

n(t)
Ls

k(t) = 0, ∀k ̸= n, ∀s ∈ {h, l}

(101)

State II: Inexperienced workers in industry n search in industry n + 1.
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For µ ∈ ((C2
(n,n+1))

−σ M1,n, (C1
(n,n+1))

−σ M1,n],

Ĉ−σ = µ/M1,n ⇒
˙̂C

Ĉ
=

A − ρ

σ
= gc ⇒ Ĉ(t) = Ĉ(tl

n+1)e
gc(t−tl

n+1) (102)

From our definitions, we have

L̇(l,l)
(n,n+1) = −ξ

π f̂
π f̂ + δ̂

L(l,l)
(n,n+1) ⇒ L(l,l)

(n,n+1)(t) = L(l,l)
(n,n+1)(t

l
n+1)e

−ξ
π f̂

π f̂+δ̂
(t−tl

n+1), (103)

and

L̇(l,h)
(n,n+1) = ξ

π f̂
π f̂ + δ̂

Ll
n+1 = ξ

π f̂
π f̂ + δ̂

(
C − C1

(n,n+1)

λn+1 π f̂
π f̂+δ̂

− λn π f̂
π f̂+δ̂

) (104)

C1
(n,n+1) = λn f̂

f̂+δ̂
(L − L(l,l)

(n,n+1) − L(l,h)
(n,n+1)) + λn π f̂

π f̂+δ̂
L(l,l)
(n,n+1) + λn+1 f̂

f̂+δ̂
L(l,h)
(n,n+1) (105)

Combining equations (102) - (105) and

Ĉ(tl
n+1) = λn( π f̂

π f̂+δ̂
Ll

n(tl
n+1) +

f̂
f̂+δ̂

Lh
n(tl

n+1)), L(l,l)
(n,n+1)(t

l
n+1) = Ll

n(tl
n+1),

we have

L̇(l,h)
(n,n+1) =

ξ( π f̂
π f̂+δ̂

Ll
n(tl

n+1) +
f̂

f̂+δ̂
Lh

n(tl
n+1))

λ − 1
egc(t−tl

n+1) − ξ
f̂

f̂ + δ̂

L
λ − 1

+

ξ

f̂
f̂+δ̂

− π f̂
π f̂+δ̂

λ − 1
Ll

n(t
l
n+1)e

−ξ
π f̂

π f̂+δ̂
(t−tl

n+1) − ξ
f̂

f̂ + δ̂
L(l,h)
(n,n+1) (106)

Solving the differential equation gives

Ll
n+1(t) =

π f̂+δ̂

π f̂
[ Zngc

gc+ξ
f̂

f̂+δ̂

egc(t−tl
n+1) −

π f̂
π f̂+δ̂

Ll
n(tl

n+1)

λ−1 e
−ξ

π f̂
π f̂+δ̂

(t−tl
n+1) − (

f̂
f̂+δ̂

Lh
n(tl

n+1)

λ−1 −
ξZn

f̂
f̂+δ̂

gc+ξ
f̂

f̂+δ̂

)e
−ξ

f̂
f̂+δ̂

(t−tl
n+1)]

Lh
n+1(t) =

ξZn

gc+ξ
f̂

f̂+δ̂

egc(t−tl
n+1) +

Ll
n(tl

n+1)
λ−1 e

−ξ
π f̂

π f̂+δ̂
(t−tl

n+1) + (
Lh

n(tl
n+1)

λ−1 − ξZn

gc+ξ
f̂

f̂+δ̂

)e
−ξ

f̂
f̂+δ̂

(t−tl
n+1) − L

λ−1

Ll
n(t) = e

− π f̂
π f̂+δ̂

ξ(t−tl
n+1)Ll

n(tl
n+1)− Ll

n+1(t)

Lh
n(t) = L − e

− π f̂
π f̂+δ̂

ξ(t−tl
n+1)Ll

n(tl
n+1)− Lh

n+1(t)
Ls

k(t) = 0, ∀k ̸= n and n + 1, ∀s ∈ {h, l}
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where Zn is given by

Zn ≡
π f̂

π f̂+δ̂
Ll

n(tl
n+1) +

f̂
f̂+δ̂

Lh
n(tl

n+1)

λ − 1
.

Let tall high
n denote the ending time of this stage: µ(tall high

n ) = (C2
(n,n+1))

−σ M1,n. At
this stage, inexperienced workers in industry n move into the new industry n + 1 and
search in both industries, while experienced workers in industry n search only in in-
dustry n. With on-the-job learning, a fraction of inexperienced workers in industry n
become experienced in industry n + 1. Consumption grows at the constant rate gc.

State III: All inexperienced workers in industry n stay in industry n + 1.

For µ ∈ ((C2
(n,n+1))

−σ M0,n, (C2
(n,n+1))

−σ M1,n],

Ĉ−σ − µ
∂Ω(Ĉ, Ll, L − Ll)

∂C−
|Ĉ=C2

(n,n+1)
≥ 0, Ĉ−σ − µ

∂Ω(Ĉ, Ll, L − Ll)

∂C+
|Ĉ=C2

(n,n+1)
≤ 0

Experienced workers in industry n do not move into industry n+ 1. This is again due
to the jump in marginal cost. All workers that are inexperienced in industry n search
in industry n + 1 and gradually become experienced in industry n + 1. Let th

n+1 denote
the end of this stage: µ = (C2

(n,n+1))
−σ M0,n. Though there is no industrial upgrading,

consumption grows due to the increase in experienced workers, though at a speed lower
than gc:

C(t) = C2
(n,n+1)(t)

Using L̇l
n+1 = L̇(l,l)

(n,n+1) = −ξ
π f̂

π f̂+δ̂
Ll

n+1, we find


Ll

n+1(t) = Ll
n+1(t

all high
n )e

−ξ
π f̂

π f̂+δ̂
(t−tall high

n )

Lh
n+1(t) = Ll

n+1(t
all high
n ) + Lh

n+1(t
all high
n )− Ll

n+1(t)
Lh

n(t) = Lh
n(t

all high
n ), Ll

n(t) = 0
Ls

k(t) = 0, ∀k ̸= n and n + 1, ∀s ∈ {h, l}

(107)

State IV : Experienced workers in industry n search in industry n + 1.
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For µ ∈ ((C0
(n+1,n+2))

−σ M0,n, (C2
(n,n+1))

−σ M0,n],

Ĉ−σ = µ/M0,n ⇒
˙̂C

Ĉ
=

A − ρ

σ
= gc ⇒ Ĉ(t) = Ĉ(th

n+1)e
gc(t−th

n+1) (108)

As Lh
n+1 = L(h,h)

(n,n+1) + L(l,h)
(n,n+1) holds at this stage, rewrite C2

(n,n+1)

C2
(n,n+1) = λn f̂

f̂ + δ̂
(L− Lh

n+1 − L(l,l)
(n,n+1))+ λn+1 f̂

f̂ + δ̂
Lh

n+1 + λn+1 π f̂
π f̂ + δ̂

L(l,l)
(n,n+1) (109)

As all inexperienced workers in industry n stay in industry n + 1,

L̇(l,l)
(n,n+1) = −ξ

π f̂
π f̂ + δ̂

L(l,l)
(n,n+1) ⇒ L(l,l)

(n,n+1)(t) = L(l,l)
(n,n+1)(t

h
n+1)e

−ξ
π f̂

π f̂+δ̂
(t−th

n+1) (110)

The evolution of Lh
n+1 follows

L̇h
n+1 = L̇(l,h)

(n,n+1) + L̇(h,h)
(n,n+1) = ξ

π f̂
π f̂ + δ̂

Ll
n+1 = ξ

π f̂
π f̂ + δ̂

(L(l,l)
(n,n+1) +

C − C2
(n,n+1)

λn+1 π f̂
π f̂+δ̂

− λn f̂
f̂+δ̂

)

(111)
Combining (108) -(110) and substituting using

Ĉ(th
n+1) = λn f̂

f̂ + δ̂
Lh

n(t
h
n+1) + λn+1 f̂

f̂ + δ̂
Lh

n+1(t
h
n+1) + λn+1 π f̂

π f̂ + δ̂
Ll

n+1(t
h
n+1), (112)

we transform the differential equation as

L̇h
n+1 = ξQnegc(t−th

n+1) − ξN1 − ξN2Lh
n+1 (113)

where

Qn ≡
(Lh

n(th
n+1)

f̂
f̂+δ̂

+ λLl
n+1(t

h
n+1)

π f̂
π f̂+δ̂

+ λLh
n+1(t

h
n+1)

f̂
f̂+δ̂

) π f̂
π f̂+δ̂

λ
π f̂

π f̂+δ̂
− f̂

f̂+δ̂

.
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The solution to this equation gives
Ll

n+1(t) =
π f̂+δ̂

π f̂
[ Qngc

N2ξ+gc
egc(t−th

n+1) − (N1 + N2Lh
n+1(t

h
n+1)−

QnξN2
gc+ξN2

)e−N2ξ(t−th
n+1)]

Lh
n+1(t) = (Lh

n+1(t
h
n+1) +

N1
N2

− Qnξ
N2ξ+gc

)e−N2ξ(t−th
n+1) + Qnξ

N2ξ+gc
egc(t−th

n+1) − N1
N2

Lh
n(t) = L − Ll

n+1(t)− Lh
n+1(t), Ll

n(t) = 0
Ls

k(t) = 0, ∀k ̸= n and n + 1, ∀s ∈ {h, l}

Experienced workers in industry n now move into industry n + 1. They are initially
inexperienced in industry n + 1 and become experienced through on-the-job learning.
Consumption grows at a constant rate gc. When all experienced workers in industry
n search in industry n + 1 at time tall

n+1, the economy goes to the stage I of industrial
upgrading from industry n + 1 to industry n + 2.

Consumption Growth Rate:

The long-run average consumption growth rate g∗ = limt→∞
log(C(t))−log(C(t0))

t−t0
. Com-

bining µ(tl
n+1) = (C1

(n,n+1))
−σ M1,n with (99), we have

tl
n+2 − tl

n+1 =

σlog(
C1
(n+1,n+2)

C1
(n,n+1)

) + log(M1,n+1
M1,n

)

A − ρ

As log(
C1
(n+1,n+2)

C1
(n,n+1)

) → log(λ) and log(M1,n+1
M1,n

) → log( a
λ )

g∗ = lim
n→∞

log(C(tl
n+2))− log(C(tl

n+1))

tl
n+2 − tl

n+1
=

gc

1 + log(a)−log(λ)
σlog(λ)

(114)

The average consumption growth rate is independent of labor market frictions f̂ /δ̂

mismatch π and learning rate ξ.

Unemployment:

Combining the expressions of {Ll
n(t)}∞

n=2 at all stages, we obtain the explicit expres-
sion of the aggregate unemployment U(t) shown in (28) and (29). To verify that this is
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the right solution, and to prove that U(t) is a decreasing function at time t ∈ (tall
n , th

n+1]

and an increasing function at time t ∈ (th
n+1, tall

n+1], we need to check the conditions that
L̇l

n+1(t) > 0 at stage II and stage IV. Using the expressions of Ll
n+1(t), we only need to

prove that L̇l
n+1(t

l
n+1) > 0 and L̇l

n+1(t
h
n+1) > 0. At stage II, L̇l

n+1(t) > 0 is equivalent to

gcC(t) > ξ
π f̂

π f̂ + δ̂
Ll

n+1(λ
n+1 f̂

f̂ + δ̂
− λn π f̂

π f̂ + δ̂
) + ξ

π f̂
π f̂ + δ̂

Ll
n(λ

n f̂
f̂ + δ̂

− λn π f̂
π f̂ + δ̂

)

Thus L̇l
n+1(t

all high
n ) > 0 is equivalent to

gcC(tall high
n ) > ξ

π f̂
π f̂+δ̂

Ll
n+1(t

all high
n )(λn+1 f̂

f̂+δ̂
− λn π f̂

π f̂+δ̂
)

⇒ gc(Lh
n(t)

f̂
f̂+δ̂

+ λLl
n+1(t)

π f̂
π f̂+δ̂

+ λLh
n+1(t)

f̂
f̂+δ̂

)|
t=tall high

n
> ξ

π f̂
π f̂+δ̂

Ll
n+1(t)(λ

f̂
f̂+δ̂

− π f̂
π f̂+δ̂

)|
t=tall high

n

Similarly, L̇l
n+1(t

all
n+1) > 0 is equivalent to

gc(λLl
n+1(t)

π f̂
π f̂+δ̂

+ λLh
n+1(t)

f̂
f̂+δ̂

)|t=tall
n+1

> ξ
π f̂

π f̂+δ̂
Ll

n+1(t)(λ
f̂

f̂+δ̂
− f̂

f̂+δ̂
)|t=tall

n+1

As λ > π f̂+δ̂

π f̂+πδ̂
, it implies that

gc(Ll
n+1(t)

π f̂
π f̂+δ̂

+ Lh
n+1(t)

f̂
f̂+δ̂

)|t=tall
n+1

> ξ
π f̂

π f̂+δ̂
Ll

n+1(t)(
f̂

f̂+δ̂
− π f̂

π f̂+δ̂
)|t=tall

n+1

Using the expression of Ll
n+1(t), we have

L̇l
n+1(t

l
n+1) > 0 ⇔ gc(Ll

n(t)
π f̂

π f̂+δ̂
+ Lh

n(t)
f̂

f̂+δ̂
)|t=tl

n+1
> ξ

π f̂
π f̂+δ̂

Ll
n(t)(

f̂
f̂+δ̂

− π f̂
π f̂+δ̂

)|t=tl
n+1

L̇l
n+1(t

h
n+1) > 0 ⇔ gc(Lh

n(t)
f̂

f̂+δ̂
+ λLl

n+1(t)
π f̂

π f̂+δ̂
+ λLh

n+1(t)
f̂

f̂+δ̂
)|t=th

n+1
> ξ

π f̂
π f̂+δ̂

Ll
n+1(t)(λ

f̂
f̂+δ̂

− f̂
f̂+δ̂

)|t=th
n+1

For the industrial upgrading from industry 1 to industry 2, Lh
1(t

h
2) = L and Ll

1(t
h
2) =

0 as workers are all experienced in industry 1. Then it is straightforward to check that
L̇l

2(t
h
2) > 0. From the discussions above, L̇l

n(th
n) > 0 implies L̇l

n(tall
n ) > 0, L̇l

n(tall
n ) > 0

implies L̇l
n+1(t

l
n+1) > 0 and then implies L̇l

n+1(t
all high
n ) > 0, and L̇l

n+1(t
all high
n ) > 0 im-

plies L̇l
n+1(t

h
n+1) > 0. Using this induction, we know L̇l

n+1(t) > 0 holds at stage II and
stage IV in the industrial upgrading from industry n to industry n + 1.

Life Span Of Industries:
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Industry n+ 1 appears at stage II in the industrial upgrading from industry n to n+ 1
when inexperienced workers in industry n move into industry n + 1. It disappears at
the end of stage IV in the industrial upgrading from industry n + 1 to n + 2 when all
experienced workers in industry n + 1 move into n + 2. Thus the life span of industry
n + 1 is tall

n+2 − tl
n+1. tall

n+2 − tl
n+1 = (tl

n+3 − tl
n+1)− (tl

n+3 − tall
n+2). We have

lim
n→∞

(tl
n+3 − tl

n+1) =
2 log(λ)

gc
+

2log( a
λ )

A − ρ

In stage I, the following equation holds,

(C0
(n+2,n+3)(t

l
n+3))

−σ M1,n+2 = (C0
(n+2,n+3)(t

all
n+2))

−σ M0,n+1e−(A−ρ)(tl
n+3−tall

n+2)

When ξ is small, C0
(n+2,n+3)(t

l
n+3) ≈ C0

(n+2,n+3)(t
all
n+2), and then

tl
n+3 − tall

n+2 ≈
log( a

λ
a−1
λ−1

λ
π f̂

π f̂+δ̂
− f̂

f̂+δ̂

a π f̂
π f̂+δ̂

− f̂
f̂+δ̂

)

A − ρ

In the long run, the life span of industries is given by (27), which is a decreasing
function of π.

B.7 Extensions

B.7.1 Productivity

We extend our analysis to allow for different productivity of workers. We show that the
cyclicality pattern of the aggregate unemployment rate still holds.

Case I: A simple extension is to assume that the technology to produce the intermediate
good xn for n ≥ 1 follows:

Fn(k, ln
h , ln

l ) = λn min{ k
an , ln

h}+ δLλn min{ k
δLan , ln

l }

where 1
a < δL < 1. ln

h and ln
l denote the number of experienced and the inexperienced

workers in industry n employed by a particular firm. The inexperienced workers in
industry n have lower productivity as δL < 1 but their production requires less capital.
Industry n is still more capital intensive thant industry n − 1 for low-skilled workers in
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industry n as δL > 1
a . In an instantaneous equilibrium, what matters for the output is

the ”expected” productivity of the workers. For the experienced workers in industry n,

their ”expected” productivity is f̂
f̂+δ̂

and for the inexperienced workers in industry n,

their ”expected” productivity is δL
π f̂

π f̂+δ̂
. Producing one unit of intermediate goods in

industry n requires constant an

λn units of capital inflow. Let’s define π̃ as

π̃ f̂
π̃ f̂ + δ̂

= δL
π f̂

π f̂ + δ̂
(115)

Let’s define ξ̃ ≡ ξ/δL. The equilibrium path of {C(t), K(t), Ω(t), L(i,j)
(n,n+1)(t)} for

this new economy is the same as their equilibrium path for our benchmark model with
mismatch friction π̃ and learning rate ξ̃. To check it, we can check that the minimal
required capital to produce output C is Ω(C, {L(i,j)

(n,n+1)}; π̃) and the evolution equations

of L(i,j)
(n,n+1) become

L̇(i,h)
(n,n+1) = ξ̃

π̃ f̂
π̃ f̂ + δ̂

L(i,l)
(n,n+1), ∀i ∈ {l, h}

The planner’s problem is equivalently the same as our benchmark case once we
reset the mismatch rate to be π̃ and learning rate to be ξ̃. Given the dynamics of la-
bor markets L(i,j)

(n,n+1)(t), we prove the cyclicality of the aggregate unemployment rate.

But here the aggregate unemployment rate is U(t) = δ̂
f̂+δ̂

∑∞
n=0 Lh

n + δ̂
π f̂+δ̂

∑∞
n=0 Ll

n ̸=
δ̂

f̂+δ̂
∑∞

n=0 Lh
n + δ̂

π̃ f̂+δ̂
∑∞

n=0 Ll
n. Compared with the benchmark case, U(t) has relatively

smaller fluctuation.

Case II: For an alternative setting of productivity differences, we assume that the pro-
duction function of intermediate good xn for n ≥ 1 follows:

Fn(k, ln
h , ln

l ) = λn min{ k
an , ln

h}+ δLλn min{ k
an , ln

l }

Now the inexperienced workers require the same amount of capital investment as
experienced workers but have lower output δLλn. We define π̃ using (115). As in our
benchmark setting, we impose the following assumption:
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Assumption 3: The following is satisfied 19:

(i) f = κ f̂ , δ = κδ̂, κ → ∞;

(ii) 0 < A − ρ < σA;

(iii) ξ̃ < ˜̄ξ in f ;

(iv) δL >
λ

a
,

π f̂
π f̂ + δ̂

> max{ a
(aδL − λ)λ + 1

, (
1
δL

− 1)} f̂
f̂ + δ̂

For the optimal steady state, we follow the same approach and show that the function
of required capital flow Ω̃(C, {L(i,j)

(n,n+1)}) becomes

Ω̃(C, {L(i,j)
(n,n+1)}) =



an+1 f̂
f̂+δ̂

−an π f̂
π f̂+δ̂

λn+1 f̂
f̂+δ̂

−λn π̃ f̂
π̃ f̂+δ̂

(C − C̃0
(n,n+1)) + E0

(n,n+1), if C ∈ [C̃0
(n,n+1), C̃1

(n,n+1))

an+1−an

λn+1−λn (C − C̃1
(n,n+1)) + E1

(n,n+1), if C ∈ [C̃1
(n,n+1), C̃2

(n,n+1))

an+1 π f̂
π f̂+δ̂

−an f̂
f̂+δ̂

λn+1 π̃ f̂
π̃ f̂+δ̂

−λn f̂
f̂+δ̂

(C − C̃2
(n,n+1)) + E2

(n,n+1), if C ∈ [C̃2
(n,n+1), C̃0

(n+1,n+2))

where

C̃0
(n,n+1) ≡ λn[

f̂
f̂ + δ̂

(L(h,l)
(n,n+1) + L(h,h)

(n,n+1)) +
π̃ f̂

π̃ f̂ + δ̂
(L(l,l)

(n,n+1) + L(l,h)
(n,n+1))],

C̃1
(n,n+1) ≡ λn[

f̂
f̂ + δ̂

(L(h,l)
(n,n+1) + L(h,h)

(n,n+1) + λL(l,h)
(n,n+1)) +

π̃ f̂
π̃ f̂ + δ̂

L(l,l)
(n,n+1)]

C̃2
(n,n+1) ≡ λn[

f̂
f̂ + δ̂

(L(h,l)
(n,n+1) + λL(h,h)

(n,n+1) + λL(l,h)
(n,n+1)) +

π̃ f̂
π̃ f̂ + δ̂

λL(l,l)
(n,n+1)]

For the dynamic path, we follow the steps in our benchmark model and show that
there are still four stages for industrial upgrading from industry n to industry n + 1:

(1) When µ ∈ ((C̃0
(n,n+1))

−σ M1,n, (C̃0
(n,n+1))

−σ M̃0,n−1], all workers stay in industry n,

19Condition (iv) is sufficient to ensure that λ
a

λ
f̂

f̂+δ̂
− π̃ f̂

π̃ f̂+δ̂

a f̂
f̂+δ̂

− π f̂
π f̂+δ̂

<
λ

π̃ f̂
π̃ f̂+δ̂

− f̂
f̂+δ̂

a π f̂
π f̂+δ̂

− f̂
f̂+δ̂

.
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where

M̃0,n ≡
λn+1 π̃ f̂

π̃ f̂+δ̂
− λn f̂

f̂+δ̂

an+1 π f̂
π f̂+δ̂

− an f̂
f̂+δ̂

The equations of Ls
k follow (101).

(2) When µ ∈ ((C̃2
(n,n+1))

−σ M1,n, (C̃1
(n,n+1))

−σ M1,n], inexperienced workers in indus-

try n move into industry n + 1. The evolution equations of L(l,l)
(n,n+1) and L(l,h)

(n,n+1) follow


L̇(l,l)
(n,n+1) = −ξ

π f̂
π f̂+δ̂

L(l,l)
(n,n+1)

L̇(l,h)
(n,n+1) =

ξ
δL
(Z̃negc(t−tl

n+1) − f̂
f̂+δ̂

L
λ−1 +

f̂
f̂+δ̂

− π̃ f̂
π̃ f̂+δ̂

λ−1 Ll
n(tl

n+1)e
−ξ

π f̂
π f̂+δ̂

(t−tl
n+1) − f̂

f̂+δ̂
L(l,h)
(n,n+1))

Then we have

Ll
n+1(t) =

π̃ f̂+δ̂

π̃ f̂
[Z̃n

gc+
ξ

δL
(1−δL)

f̂
f̂+δ̂

gc+
ξ

δL
f̂

f̂+δ̂

egc(t−tl
n+1) +

f̂
f̂+δ̂

(1−δL)−
π̃ f̂

π̃ f̂+δ̂

λ−1 Ll
n(tl

n+1)e
−ξ

π f̂
π f̂+δ̂

(t−tl
n+1) − (1 − δL)

f̂
f̂+δ̂

L
λ−1

− f̂
f̂+δ̂

(
Lh

n(tl
n+1)δL

λ−1 − ξZ̃n

gc+
ξ

δL
f̂

f̂+δ̂

)e
− ξ

δL
f̂

f̂+δ̂
(t−tl

n+1)]

Lh
n+1(t) =

ξZ̃n

gc+
f̂

f̂+δ̂

ξ
δL

egc(t−tl
n+1) +

Ll
n(tl

n+1)δL
λ−1 e

−ξ
π f̂

π f̂+δ̂
(t−tl

n+1) + (
Lh

n(tl
n+1)δL

λ−1 − ξZ̃n

gc+
f̂

f̂+δ̂

ξ
δL

)e
− ξ

δL
f̂

f̂+δ̂
(t−tl

n+1) − LδL
λ−1

where Z̃n ≡
π̃ f̂

π̃ f̂+δ̂
Ll

n(tl
n+1)+

f̂
f̂+δ̂

Lh
n(tl

n+1)

λ−1 . Under our assumption, L̇l
n+1(t) > 0, ∀t ∈ [tl

n+1, tall high
n )

if L̇l
n+1(t

l
n+1) > 0.

(3) When µ ∈ ((C̃2
(n,n+1))

−σ M̃0,n, (C̃2
(n,n+1))

−σ M1,n], all experienced workers in in-
dustry n stay in industry n and all inexperienced workers in industry n stay in industry
n + 1. The equations of Ls

k follow (107).

(4) When µ ∈ ((C̃0
(n+1,n+2))

−σ M̃0,n, (C̃2
(n,n+1))

−σ M̃0,n], experienced workers in indus-
try n move into industry n + 1. And the equations of Li

n+1(t) change into Ll
n+1(t) =

π f̂+δ̂

π f̂
[ Q̃ngc

Ñ2ξ+gc
egc(t−th

n+1) − (Ñ1 + Ñ2Lh
n+1(t

h
n+1)−

Q̃nξÑ2
gc+ξÑ2

)e−Ñ2ξ(t−th
n+1)]

Lh
n+1(t) = (Lh

n+1(t
h
n+1) +

Ñ1
Ñ2

− Q̃nξ
Ñ2ξ+gc

)e−Ñ2ξ(t−th
n+1) + Q̃nξ

Ñ2ξ+gc
egc(t−th

n+1) − Ñ1
Ñ2
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where

Q̃n ≡
(Lh

n(th
n+1)

f̂
f̂+δ̂

+ λLl
n+1(t

h
n+1)

π̃ f̂
π̃ f̂+δ̂

+ λLh
n+1(t

h
n+1)

f̂
f̂+δ̂

) π f̂
π f̂+δ̂

λ
π̃ f̂

π̃ f̂+δ̂
− f̂

f̂+δ̂

Ñ1 ≡
L f̂

f̂+δ̂

π f̂
π f̂+δ̂

λ
π̃ f̂

π̃ f̂+δ̂
− f̂

f̂+δ̂

, Ñ2 ≡
(λ − 1) f̂

f̂+δ̂

π f̂
π f̂+δ̂

λ
π̃ f̂

π̃ f̂+δ̂
− f̂

f̂+δ̂

We still have L̇l
n+1(t) > 0, ∀t ∈ [th

n+1, tall
n+1) if L̇l

n+1(t
h
n+1) > 0. To verify this is the

right solution and the cyclicality of the aggregate unemployment rate, we use again
the induction method. As all workers are assumed to be experienced in industry 1, it’s
straightforward to check that L̇l

2(t
h
2) > 0. Then it implies L̇l

2(t
all
2 ) > 0 or

gc(λLl
2(t)

π̃ f̂
π̃ f̂ + δ̂

+ λLh
2(t)

f̂
f̂ + δ̂

)|t=tall
2
> ξ

π f̂
π f̂ + δ̂

Ll
2(t)(λ

f̂
f̂ + δ̂

− f̂
f̂ + δ̂

)|t=tall
2

which implies that

gc(Ll
2(t)

π̃ f̂
π̃ f̂ + δ̂

+ Lh
2(t)

f̂
f̂ + δ̂

)|t=tall
2
> ξ

π f̂
π f̂ + δ̂

Ll
2(t)(

f̂
f̂ + δ̂

− π̃ f̂
π̃ f̂ + δ̂

)|t=tall
2

Then it implies that L̇l
3(t

l
3) > 0 as it is equivalent to

gc(Ll
2(t)

π̃ f̂
π̃ f̂ + δ̂

+ Lh
2(t)

f̂
f̂ + δ̂

)|t=tl
3
> ξ

π f̂
π f̂ + δ̂

Ll
2(t)(

f̂
f̂ + δ̂

− π̃ f̂
π̃ f̂ + δ̂

)|t=tl
3

Then it implies L̇l
3(t

all high
2 ) > 0 or

gc(Lh
2(t)

f̂
f̂ + δ̂

+ λLl
3(t)

π̃ f̂
π̃ f̂ + δ̂

+ λLh
3(t)

f̂
f̂ + δ̂

)|
t=tall high

2
> ξ

π f̂
π f̂ + δ̂

Ll
3(t)(λ

f̂
f̂ + δ̂

− π̃ f̂
π̃ f̂ + δ̂

)|
t=tall high

2

which further implies L̇l
3(t

h
3) > 0 or

gc(Lh
2(t)

f̂
f̂ + δ̂

+ λLl
3(t)

π̃ f̂
π̃ f̂ + δ̂

+ λLh
3(t)

f̂
f̂ + δ̂

)|t=th
3
> ξ

π f̂
π f̂ + δ̂

Ll
3(t)(λ

f̂
f̂ + δ̂

− f̂
f̂ + δ̂

)|t=th
3

From L̇l
3(t

h
3) > 0, we repeat the above analysis and so on and so forth. It shows again
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that the pattern of labor market dynamics is the same as our benchmark case without
productivity difference. Then it immediately verifies the cyclical aggregate unemploy-
ment rate.

B.7.2 Matching function

This section shows that the assumption of a constant job finding rate can be rational-
ized as an equilibrium outcome in the Diamond-Mortensen-Pissarides model setting.
Suppose that the matching function is concave and constant returns to scale in each in-
dustry, we prove that the job finding rate is unique and constant during the industry
upgrading process. Consider an economy with a unit mass of identical households.
Each household is initially endowed with capital K, inexperienced labor Ll and experi-
enced labor Lh. There are two sectors, one producing capital goods and another produc-
ing consumption goods, and their production functions are the same as in the bench-
mark model. Labor markets are frictional: new matches between i-experience-typed
unemployed workers in industry j and job vacancies in that industry are determined
by the matching function Ai

jm(Ui
j , Vi

j ), where Ui
j is the number of i-experience-typed

unemployed workers searching in industry j, and Vi
j is the number of job vacancies for

i-experience-typed workers in industry j. The function m(·) is strictly increasing and
strictly concave in both arguments, and it is constant return to scale. Ai

j denotes the
matching efficiency. Assume that Ai

j = A if i ̸= l or j ̸= 2 and Al
2 = πA. That is,

matching efficiency is lower for inexperienced workers in industry 2 due to mismatch.

Let q(θi
j) ≡

m(Ui
j ,V

i
j )

Ui
j

= m(1, θi
j) where θi

j =
Vi

j

Ui
j

denotes the market tightness for workers

with experience type i in industry j. Matches are destroyed exogenously at rate δ in
all industries. Posting vacancies is costly, and costs c in terms of the final consumption
good in any industry for all workers independent of experienced types. The planner’s
problem becomes

max
C

∞∫
t=0

e−ρt C1−σ − 1
1 − σ

dt

subject to

K̇ = AK − Ω(C + ∑
i∈{l,h}

2

∑
j=0

Vi
j ci

j, El
0 + Eh

0 , El
1 + Eh

1 , El
2 + Eh

2),

The evolution of labor markets is similar to the benchmark model except that the job
finding rate now is Ai

jq(θ
i
j) rather than f or π f . Consider the limit case where Ai

j = κÂi
j,
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δ = κδ̂ and κ → ∞. To find an optimal steady state, the static optimization becomes

max
Ui

j ,V
i
j ,Kj

{(El
0 + Eh

0)+ λ min{El
1 + Eh

1 ,
K1

a
}+ λ2 min{El

1 + Eh
2 ,

K2

a2 }+ λ3 K3

a3 − ∑
i∈{l,h}

2

∑
j=0

Vi
j c},

subject to
δ̂Ei

j = Âi
jq(θ

i
j)U

i
j , i ∈ {l, h}, j ∈ {0, 1, 2}

2

∑
j=0

(Ei
j + Ui

j) ≤ Li, i ∈ {l, h}

K1 + K2 + K3 ≤ Ω.

We characterize properties of the optimal steady state equilibrium in the following
proposition.

Proposition 10. If the matching function m(Ui
j , Vi

j ) satisfies constant return to scale, strictly

increasing and strictly concave in both arguments, the job finding rates Âi
jq(θ

i
j) and Âi

j+1q(θi
j+1)

are uniquely determined, and constant for any i ∈ {l, h} in the optimal steady state equilibrium
when industry j and industry j + 1 coexist.

Proof. With some abuse of notation, set the Lagrange as follows

(El
0 + Eh

0) + λ min{El
1 + Eh

1 ,
K1

a
}+ λ2 min{El

1 + Eh
2 ,

K2

a2 }+ λ3 K3

a3 − ∑
i∈{l,h}

2

∑
j=0

Vi
j c

+µk(Ω − a ∑
i∈{l,h}

Ei − a2 ∑
i∈{l,h}

Ei
2 − K3) + ∑

i∈{l,h}
µi(Li −

2

∑
j=0

(Ei
j + Ui

j))

+ ∑
i∈{l,h}

2

∑
j=0

µi
j(Âi

jq(θ
i
j)U

i
j − δ̂Ei

j)

where Âi
j = Â if i ̸= l or j ̸= 2, and Âl

2 = πÂ. The Kuhn-Tucker conditions are

1 − µi − δ̂µi
0 ≤ 0, Ei

0 ≥ 0, (1 − µi − δ̂µi
0)Ei

0 = 0, i ∈ {l, h}

λ − µi − δ̂µi
1 − aµk ≤ 0, Ei

1 ≥ 0, (λ − µi − δ̂µi
1 − aµk)Ei

1 = 0, i ∈ {l, h}

λ2 − µi − δ̂µi
2 − a2µk ≤ 0, Ei

2 ≥ 0, (λ2 − µi − δ̂µi
2 − a2µk)Ei

2 = 0, i ∈ {l, h}

−µi + µi
j Â

i
j(q(θ

i
j)− θi

jq′(θi
j)) ≤ 0, Ui

j ≥ 0, [−µi + µi
j Â

i
j(q(θ

i
j)− θi

jq′(θi
j))]U

i
j = 0, i ∈ {l, h}, j ∈ {0, 1, 2}
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− c + µi
j Â

i
jq
′(θi

j) ≤ 0, Vi
j ≥ 0, [−c + µi

j Â
i
jq
′(θi

j)]V
i
j = 0, i ∈ {l, h}, j ∈ {0, 1, 2}

Consider the first case in which industry 0 and 1 are in production. We must have
Ei

0 > 0, Ui
0 > 0, and Vi

0 > 0, which imply that 1 − µi − δ̂µi
0 = 0, −µi + µi

0Â(q(θi
0) −

θi
0q′(θi

0)) = 0, and −c + µi
0Âq′(θi

0) = 0.

Combining these conditions, we get

µi = 1 − δ̂

Âq′(θi
0)

c =
q(θi

0)− θi
0q′(θi

0)

q′(θi
0)

c,

The strict concavity induces that d(q(θi
0)−θi

0q′(θi
0))

dθi
0

= −θi
0q′′(θi

0) > 0. Since the second

part is decreasing with θi
0 while the third part is increasing with θi

0, θi
0 is uniquely de-

termined by c, δ̂ and Â. Therefore the job finding rate Âq(θi
0) in industry 0 is uniquely

determined and constant. In terms of industry 1, we have

µi =
q(θi

1)− θi
1q′(θi

1)

q′(θi
1)

c,

The last part indicates that θi
1 = θi

0 and the job finding rate Âq(θi
1) in industry 1 is just

the same as the job finding rate in industry 0. Consider the case that both industry 1 and
2 are in production. For experienced workers in both industry 1 and 2, the Kuhn-Tucker
conditions imply that

µh = λ − δ̂

Âq′(θh
1)

c − aµk =
q(θh

1)− θh
1q′(θh

1)

q′(θh
1)

c,

µh = λ2 − δ̂

Âq′(θh
2)

c − a2µk =
q(θh

2)− θh
2q′(θh

2)

q′(θh
2)

c,

Combining the above expressions, it must hold that θh
1 = θh

2 . By eliminating µk, we
derive the following equation to determine θh

1 and θh
2

λ
a − λ

a − 1
=

q(θh
1)− θh

1q′(θh
1) +

δ̂
Â

q′(θh
1)

c,

The first part is constant while the second part is increasing with θh
1 . Thus θh

1 (or
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θh
2) is uniquely determined by c, δ̂, Â, a and λ. The job finding rates are the same for

experienced workers in industry 1 and 2. For inexperienced workers, more specifically,
experienced in industry 1 and inexperienced in industry 2, we can similarly prove θl

1 =

θl
2, and derive the following equation

λ
a − λ

a − 1
=

q(θl
1)− θl

1q′(θl
1) +

δ̂
Â

a− 1
π

a−1

q′(θl
1)

c,

The expression induces a unique solution for θl
1 (or θl

2) determined by c, δ̂, Â, a and
λ and π. The job finding rate of inexperienced workers in industry 2 is π times that of
inexperienced workers in industry 1 because of mismatch. Finally, it is straightforward
to check that in both cases, given the labor endowment Ll and Lh, with larger capital
flow E, a larger share of workers searches and works in industry j + 1 to meet the mar-
ket clearing conditions.

The intuition is as follows. The planner optimally assigns the number of vacancies
for each worker who moves from industry n to n + 1 to maximize the net surplus of
consumption goods. Since the matching functions and production functions are all con-
stant return to scale, the market tightness is constant during the industrial upgrading
process. Therefore, the job finding rate is endogenously constant, consistent with the
benchmark model. What varies is the share of workers in industry n and in n + 1. With
a larger E, workers move from industry n to n + 1 to absorb extra capital investments
and produce more consumption goods.

B.8 Numerical Solution

For the four-industry model, the first order condition of the planner’s problem is

C ∈ arg max{C1−σ − 1
1 − σ

+ µ(AK − Ω(C, Ll, L − Ll))− ΛG(C, Ll, L − Ll)}

We approximate it as follows

C ≈ Ĉ ∈ arg max{C1−σ − 1
1 − σ

+ µ(AK − Ω(C, Ll, L − Ll))}
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Using this approximation, we find a closed-form solution of the equilibrium path.
Alternatively, we can solve the planner’s problem numerically by using the shooting al-
gorithm. To show that our analytical solution is close to the right solution, we consider
an extreme case in this section where we set the on-the-job learning rate ξ = 2.0 which
is 20 times the consumption growth rate gc. For all other parameters, we set them the
same as our benchmark calibration. The results are shown in Figure B.4.

Figure B.4: Labor market dynamics: numerical solution
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Even for this large learning rate, we observe little difference between our numerical
solution and the analytical one by using the approximation of the first order condition.
And the comparative static analysis using the numerical solutions gives the same pat-
tern regarding the effects of learning efficiency, mismatch and capital-goods production
efficiency, as shown in Figure B.5.
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Figure B.5: Comparative static analysis: numerical solution
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